Influence of Bi3+ content on photoluminescence of InNbO4:Eu3+,Bi3+ for white light-emitting diodes

Author:

Tang An1,Gu Liduo2,Shao Fengxiang1,Liu Xidong1,Zhao Yongtao1,Chen Haijun1,Zhang Hongsong1

Affiliation:

1. Department of Mechanical Engineering, Henan Institute of Engineering, Zhengzhou, Henan 451191, China

2. Department of Mechanics, Henan Mechanical and Electrical Vocational College, Zhengzhou, Henan , 451191, China

Abstract

Abstract A series of red-emitting phosphors InNbO4:Eu3+,Bi3+ was prepared by a high temperature solid-state reaction. The structure, size distribution and luminescence properties of the phosphors were respectively characterized by X-ray diffraction (XRD), laser particle size and molecular fluorescence spectrometer. The XRD results indicate that the phase-pure samples have been obtained and the crystal structure of the host has not changed under the Eu3+ and Bi3+ co-doping. The test of size distribution shows that the phosphor has a normal size distribution. The excitation spectra illustrate that the dominant sharp peaks are located at 394 nm (7F05L6) and 466 nm (7F05D2). Meanwhile, the emission spectra reveal that the phosphors excited by the wavelength of 394 nm or 466 nm have an intense red-emission line at 612 nm owing to the 5D07F2 transition of Eu3+. Bi3+ doping has not changed the peak positions except the photoluminescence intensity. The emission intensity is related to Bi3+ concentration, and it is up to the maximum when the Bi3+-doping concentration is 4 mol%. Due to good photoluminescence properties of the phosphor, the InNbO4:0.04Eu3+,0.04Bi3+ may be used as a red component for white light-emitting diodes.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3