Microwave assisted biosynthesis of rice shaped ZnO nanoparticles using Amorphophallus konjac tuber extract and its application in dye sensitized solar cells

Author:

Naresh Kumar P.1,Sakthivel K.2,Balasubramanian V.1

Affiliation:

1. Department of Physics, SNS College of Technology , Coimbatore , Tamilnadu , India

2. Department of Physics, Coimbatore Institute of Technology , Coimbatore , Tamilnadu , India

Abstract

Abstract Rice shaped ZnO nanoparticles have been synthesized for the first time by a biological process using Amorphophallus konjac tuber extract and used as a photoanode in a dye sensitized solar cell. The glucomannan present in aqueous tuber extract acted as a reducing agent in the synthesis process, further it also acted as a template which modified and controlled the shape of the nanoparticles. The synthesized nanoparticles were dried by microwave irradiation followed by annealing at 400 °C. The FESEM and TEM images confirmed that the synthesized ZnO nanoparticles had rice shaped morphology. Furthermore, the X-ray diffraction studies revealed that the prepared ZnO nanoparticles exhibited wurtzite phase with average particle size of 17.9 nm. The UV-Vis spectroscopy studies confirmed the value of band gap energy of biosynthesized ZnO nanoparticles as 3.11 eV. The photoelectrodes for dye sensitized solar cells were prepared with the biosynthesized ZnO nanoparticles using doctor blade method. The photoelectrode was sensitized using the fruit extract of Terminalia catappa, flower extracts of Callistemon citrinus and leaf extracts of Euphorbia pulcherrima. The dye sensitized solar cells were fabricated using the sensitized photoelectrode and their open circuit voltages and short circuit current densities were found to be in the range of 0.45 V to 0.55 V and 5.6 mA/cm2 to 6.8 mA/cm2, respectively. Thus, the photovoltaic performances of all the natural dye sensitized ZnO solar cells show better conversion efficiencies due to the morphology and preparation technique.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3