Properties of thin ZnS:Mn films sprayed by improved method: The role of Mn2+ ion concentration

Author:

Zaware Rangnath V.1,Borse Ratan Y.2,Wagh Bhiva G.3

Affiliation:

1. Department of Physics, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner-422605, Ahmednagar, Maharashtra , India

2. M.S.G. Arts, Science and Commerce College, Malegaon Camp-423105, Nasik , India

3. .S.K.W. Arts, Science and Commerce College, CIDCO, Nasik-422008, Maharashtra , India

Abstract

Abstract Undoped and Mn-doped thin ZnS films were deposited on ordinary glass substrates at temperature of 450 °C by an improved spray pyrolysis (ISP) method. The ISP parameters, such as carrier gas flow rate, solution flow rate and substrate temperature, were controlled with accuracy ±0.25 Lpm, ±1 mL/h and ±1 °C, respectively. A pulse-spray mode of the method was used to spray the precursor solution. Thin film samples were prepared for Mn-doping with the concentrations of 0 at.%, 1 at.%, 3 at.%, 6 at.%, 8 at.% and 12 at.% relative to Zn in the spray solution. The Mn-doping concentration dependent chemical composition, surface morphology, and structural, optical and photoluminescence (PL) properties were studied. All the thin films were well adherent, nearly stoichiometric, dense, uniform, and possessed cubic crystal structure with preferential orientation along h〈1 1 1〉 direction. A slight enhancement in structural properties, an increase in band gap, and a decrease in refractive index and dielectric constant with Mn-doping concentration were observed. The PL spectra of Mn-doped thin ZnS films at room temperature exhibited both the 490 nm blue defect-related emission and the 590 nm yellow-orange Mn2+ ion related emission. The observed yellow-orange emission intensity was maximum for 3 at.% of Mn-doping concentration in the spray solution.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3