Antifungal properties of essential oils for improvement of indoor air quality: a review

Author:

Whiley Harriet1,Gaskin Sharyn2,Schroder Tiffany1,Ross Kirstin1

Affiliation:

1. Environmental Health, Science and Engineering , Flinders University , GPO Box 2100, Adelaide 5000 , Australia

2. Occupational and Environmental Health, School of Public Health , The University of Adelaide , 28 Anderson St Thebarton, Adelaide 5031 , Australia

Abstract

Abstract Concerns regarding indoor air quality, particularly the presence of fungi and moulds, are increasing. The potential for essential oils to reduce, control or remove fungi, is gaining interest as they are seen as a “natural” alternative to synthetic chemical fungicides. This review examines published research on essential oils as a method of fungal control in indoor environments. It was difficult to compare the relative performances of essential oils due to differences in research methods and reporting languages. In addition, there are limited studies that scale up laboratory results and assess the efficacy of essential oils within building environments. However, generally, there appears to be some evidence to support the essential oils clove oil, tea tree oil, oregano, thyme and lemon as potential antifungal agents. Essential oils from heartwood, marjoram, cinnamon, lemon basil, caraway, bay tree, fir, peppermint, pine, cedar leaf and manuka were identified in at least one study as having antifungal potential. Future studies should focus on comparing the effectiveness of these essential oils against a large number of fungal isolates from indoor environments. Studies will then need to focus on translating these results into realistic application methods, in actual buildings, and assess the potential for long-term antifungal persistence.

Publisher

Walter de Gruyter GmbH

Subject

Public Health, Environmental and Occupational Health,Pollution,Health(social science)

Reference57 articles.

1. Daisey JM, Angell WJ, Apte MG. Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor Air 2003;13(1):53–64.

2. Robbins CA, Swenson LJ, Nealley ML, Kelman BJ, Gots RE. Health effects of mycotoxins in indoor air: a critical review. Appl Occup Environ Hyg 2000;15(10):773–84.

3. Portnoy JM, Kwak K, Dowling P, VanOsdol T, Barnes C. Health effects of indoor fungi. Ann Allergy Asthma Immunol 2005;94(3):313–20.

4. Bird C, Balshaw S, Anderson W. Getting the best answer by asking the right question-case studies in occupational exposure to mould. J Health Saf Res Practice 2012;4:19–27.

5. Arthur R. Damp Indoor Spaces and Health. Institute of Medicine: Committee on Damp Indoor Spaces and Health. Washington, DC, The National Academy Press, 2004: 355. ISBN 0-309-09193-4.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3