Building science approaches for vapor intrusion studies

Author:

Shirazi Elham1,Ojha Sweta1,Pennell Kelly G.2

Affiliation:

1. Department of Civil Engineering , University of Kentucky , Lexington, KY 40506 , USA

2. Department of Civil Engineering , University of Kentucky , Lexington, KY 40506 , USA , Phone: +1 (859) 218-2540, Fax: +1 (859) 257-4404

Abstract

Abstract Indoor air concentrations are susceptible to temporal and spatial variations and have long posed a challenge to characterize for vapor intrusion scientists, in part, because there was a lack of evidence to draw conclusions about the role that building and weather conditions played in altering vapor intrusion exposure risks. Importantly, a large body of evidence is available within the building science discipline that provides information to support vapor intrusion scientists in drawing connections about fate and transport processes that influence exposure risks. Modeling tools developed within the building sciences provide evidence of reported temporal and spatial variation of indoor air contaminant concentrations. In addition, these modeling tools can be useful by calculating building air exchange rates (AERs) using building specific features. Combining building science models with vapor intrusion models, new insight to facilitate decision-making by estimating indoor air concentrations and building ventilation conditions under various conditions can be gained. This review highlights existing building science research and summarizes the utility of building science models to improve vapor intrusion exposure risk assessments.

Funder

National Institute of Environmental Health Sciences

National Science Foundation

Publisher

Walter de Gruyter GmbH

Subject

Public Health, Environmental and Occupational Health,Pollution,Health (social science)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3