Novel study on microbial fuel cells via a comprehensive bibliometric and dynamic approach

Author:

Ni Jin12,Steinberger-Wilckens Robert2,Jiang Shanxue34,Xu Mingyue1,Wang Qunhui1ORCID

Affiliation:

1. Department of Environmental Engineering , University of Science and Technology Beijing , Beijing , China

2. School of Chemical Engineering, College of Engineering and Physical Sciences , University of Birmingham , Birmingham , UK

3. State Environmental Protection Key Laboratory of Food Chain Pollution Control , Beijing Technology and Business University , Beijing , China

4. Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry , Beijing Technology and Business University , Beijing , China

Abstract

Abstract Microbial fuel cells (MFCs) are eco-friendly and useful bioelectrical devices that harness the natural metabolisms of microbes to produce electrical power directly from organic materials. In this study, a bibliometric analysis is conducted to evaluate MFC research from 2001 to 2018 on the basis of the Science Citation Index Expanded database. Overall, MFC research has experienced a dramatic increase over last 18 years, with an exponential growth in the accumulated number of publications. Most publications are closely related to the industrialization and commoditization of MFCs, along with environmental issues, which are currently the biggest global challenges in MFC studies. A small proportion (4.34%) of the scientific journals published more than half (54.34%) of the total articles in the MFC field. Articles from the top 10 countries/regions accounted for the majority (83.16%) of the total articles, clearly indicating that advanced MFC technologies are currently dominated by these countries/regions. Moreover, an increasing number of MFC researchers are considering two-chamber and three-chamber MFC reactions. In particular, they are focusing on environmental technology instead of merely improving the efficiency of electricity generation. Materials research in the MFC field is still a popular area worldwide, and many researchers have focused on novel and eco-friendly cathode and anode developments. Meanwhile, only a few MFC studies are concerned with biological research.

Publisher

Walter de Gruyter GmbH

Subject

Public Health, Environmental and Occupational Health,Pollution,Health (social science)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3