Neurological susceptibility to environmental exposures: pathophysiological mechanisms in neurodegeneration and multiple chemical sensitivity
Author:
Molot John1, Sears Margaret2, Marshall Lynn Margaret3, Bray Riina I.3
Affiliation:
1. Family Medicine , University of Ottawa Faculty of Medicine , North York , ON , Canada 2. Ottawa Hospital Research Institute , Ottawa , ON , Canada 3. Family and Community Medicine , University of Toronto , Toronto , ON , Canada
Abstract
Abstract
The World Health Organization lists air pollution as one of the top five risks for developing chronic non-communicable disease, joining tobacco use, harmful use of alcohol, unhealthy diets and physical inactivity. This review focuses on how host defense mechanisms against adverse airborne exposures relate to the probable interacting and overlapping pathophysiological features of neurodegeneration and multiple chemical sensitivity. Significant long-term airborne exposures can contribute to oxidative stress, systemic inflammation, transient receptor subfamily vanilloid 1 (TRPV1) and subfamily ankyrin 1 (TRPA1) upregulation and sensitization, with impacts on olfactory and trigeminal nerve function, and eventual loss of brain mass. The potential for neurologic dysfunction, including decreased cognition, chronic pain and central sensitization related to airborne contaminants, can be magnified by genetic polymorphisms that result in less effective detoxification. Onset of neurodegenerative disorders is subtle, with early loss of brain mass and loss of sense of smell. Onset of MCS may be gradual following long-term low dose airborne exposures, or acute following a recognizable exposure. Upregulation of chemosensitive TRPV1 and TRPA1 polymodal receptors has been observed in patients with neurodegeneration, and chemically sensitive individuals with asthma, migraine and MCS. In people with chemical sensitivity, these receptors are also sensitized, which is defined as a reduction in the threshold and an increase in the magnitude of a response to noxious stimulation. There is likely damage to the olfactory system in neurodegeneration and trigeminal nerve hypersensitivity in MCS, with different effects on olfactory processing. The associations of low vitamin D levels and protein kinase activity seen in neurodegeneration have not been studied in MCS. Table 2 presents a summary of neurodegeneration and MCS, comparing 16 distinctive genetic, pathophysiological and clinical features associated with air pollution exposures. There is significant overlap, suggesting potential comorbidity. Canadian Health Measures Survey data indicates an overlap between neurodegeneration and MCS (p < 0.05) that suggests comorbidity, but the extent of increased susceptibility to the other condition is not established. Nevertheless, the pathways to the development of these conditions likely involve TRPV1 and TRPA1 receptors, and so it is hypothesized that manifestation of neurodegeneration and/or MCS and possibly why there is divergence may be influenced by polymorphisms of these receptors, among other factors.
Publisher
Walter de Gruyter GmbH
Subject
Public Health, Environmental and Occupational Health,Pollution,Health (social science)
Reference351 articles.
1. Thornton, JW, McCally, M, Houlihan, J. Biomonitoring of industrial pollutants: health and policy implications of the chemical body burden. Publ Health Rep 2002;117:9. https://doi.org/10.1093/phr/117.4.315. 2. Marshall, L, Weir, E, Abelsohn, A, Sanborn, MD. Identifying and managing adverse environmental health effects: 1. Taking an exposure history. CMAJ Can Med Assoc J J Assoc Medicale Can 2002;166:1049–55. 3. Li, M, Gao, S, Lu, F, Tong, H, Zhang, H. Dynamic estimation of individual exposure levels to air pollution using trajectories reconstructed from mobile phone data. Int J Environ Res Publ Health 2019;16:4522. https://doi.org/10.3390/ijerph16224522. 4. Hofman, J, Staelens, J, Cordell, R, Stroobants, C, Zikova, N, Hama, SML, et al.. Ultrafine particles in four European urban environments: results from a new continuous long-term monitoring network. Atmos Environ 2016;136:68–81. https://doi.org/10.1016/j.atmosenv.2016.04.010. 5. Wild, CP. The exposome: from concept to utility. Int J Epidemiol 2012;41:24–32. https://doi.org/10.1093/ije/dyr236.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|