X-chromosome linked genes associated with myeloid cell CNS trafficking contributes to female–male differences in the disease outcome for neuroinflammatory diseases

Author:

Darchiashvili Sopiko1,Kulkarni Ratuja1,Tandon Ritesh1,Deak Peter2,Nguyen Kayla L.3,Jain Pooja1ORCID

Affiliation:

1. Department of Microbiology and Immunology, and the Department of Neurobiology and Anatomy , Drexel University College of Medicine 12312 , Philadelphia , PA , USA

2. Department of Chemical and Biological Engineering , Drexel University , Philadelphia , PA , USA

3. Department of Anatomy and Cell Biology , The George Washington University , Washington , DC , USA

Abstract

Abstract Certain diseases such as Multiple Sclerosis (MS), a chronic demyelinating disease, affect more women than men, despite males appearing to be predisposed to infections and malignancies. X-linked genes contribute to increased MS susceptibility. Currently, an immense body of research exists that explores the complexity surrounding underlying risk factors for MS development including X-chromosome-linked inflammatory processes. Female–male disparities in disease susceptibility have been found at both the gene and chromosomal level. Genes such as CXORF21 and DDX3X can escape X-chromosome inactivation (XCI) and contribute to various disease pathogenesis. Additionally, blocking immune cell entry to the central nervous system (CNS) can have a major impact on MS. Prior research on MS has shown that immune cells such as T cells and dendritic cells (DCs) infiltrate the CNS. Due to persistent tissue stress, these cells may induce local inflammation and autoimmunity, subsequent neurodegeneration, and both the onset and progression of MS. Chemokines are signaling proteins which regulate leukocyte trafficking to the site of injury, contributing to cell recruitment, CNS inflammation, and disease severity. Some chemokine receptors (CXCR3) are X-linked and may escape XCI. This review provides an account of the contribution of x-linked genes in MS in relation to the chemotaxis of myeloid cells into CNS and subsequent neuroinflammation. The impact of the X-chromosome on autoimmunity, including XCI and the expression of X-linked genes is evaluated. Collectively, the analyses from this review seek to advance both our understanding of MS and advocate for more patient-specific therapies.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3