Modified Lignin and Delignification with a CAD-Deficient Loblolly Pine

Author:

MacKay John,Presnell Tim,Jameel Hasan,Taneda Hidetaka,O'Malley David,Sederoff Ronald

Abstract

Summary Lignin composition and lignin removal were investigated in loblolly pines (Pinus taeda L.) deficient in the monolignol biosynthesis enzyme, cinnamyl alcohol dehydrogenase (CAD). The CAD-deficient pines were homozygous for the cad-n1 allele, a mutant form of the gene encoding CAD. We show that lignin from CAD-deficient seedlings is more easily removed by mild alkali at room temperature. The nature of the phenolics recovered from this treatment link the increased lignin solubility to a build up of aromatic aldehyde lignin subunits. We carried out a retrospective genetic analysis to identify a 12 year-old CAD-deficient tree from which we isolated Milled Wood Lignin (MWL) and obtained wood chips for pulping studies. The UV absorption spectra of MWL and the effect of sodium borohydride reduction of MWL showed that the CAD-deficient tree had substantially higher incorporation of aldehyde subunits. The CAD-deficient wood was delignified more extensively than the wild type in soda pulping but not in kraft conditions. More extensive lignin removal, both in mild alkali treatment and in soda pulping, indicate that suppression of CAD in softwood trees may hold promise to produce woods well suited for “milder” pulping conditions that consume less chemicals and generate less waste.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3