Fracture research of adhesive-bonded joints for GFRP laminates under mixed-mode loading condition

Author:

Zhong Zhi-peng12,Ju Wen-zheng1

Affiliation:

1. School of Power Supply and Engineering, Nanjing Vocational Institute of Railway Technology , Nanjing 210096 , China

2. Key Laboratory of C&PC Structures of the Ministry of Education, Southeast University , Nanjing 210096 , China

Abstract

Abstract The mixed-mode fracture characterization of adhesively bonded glass fiber-reinforced polymer (GFRP) plate joints is studied based on theoretical and experimental techniques. An improved beam model is used to estimate the compliance and the mixed-mode energy release rate (ERR) for GFRP four-point mixed-mode bending specimens. In this model, the deformation of the upper and lower GFRP plates is mutually independent, and the deformable adhesive is considered to satisfy the displacement compatibility conditions on the bonding interface. The explicit theoretical solutions of the compliance and ERR using the compliance method are reduced. The present theoretical solutions fit well with the finite element solutions by comparison with the rigid joint model. From the critical loads in experiment, the variation in fracture toughness on mixed-mode I/II has been determined by modifying the stiffness of the composite GFRP/GFRP substrate.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3