Research on damage evolution mechanisms under compressive and tensile tests of plain weave SiCf/SiC composites using in situ X-ray CT

Author:

Wu Jiangxing1,Wang Hanhuan2,Gao Yantao1,Sun Lijuan3

Affiliation:

1. School of Textiles and Fashion, Shanghai University of Engineering Science , Shanghai , 201620 , China

2. AECC Shenyang Liming Aero ENGINE Co., Ltd. , Shenyang , 110046 , China

3. The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences , Beijing , 130028 , China

Abstract

Abstract To investigate the damage evolution and failure mechanisms of fiber-reinforced composite materials under complex conditions, this study conducted in situ X-ray computed tomography (CT) compression and tensile tests on plain weave two-dimensional woven SiC/SiC composite materials. The obtained CT in situ image data captured the behavior of materials during loading and after failure. Using the image reconstruction of CT data, the actual microstructure and damage evolution of the material under six consecutive loading levels were accurately revealed. Three-dimensional visualization models of the composite material were established using image processing software to analyze the damage evolution under compression and tension, and the failure mechanisms were compared. The results showed that the compression and tension failure mechanisms of SiC/SiC composite materials were similar, with the transverse cracking of the matrix being the first mode of damage, followed by delamination between layers and longitudinal matrix cracking of fiber bundles. Specifically, in terms of compression failure, the strength of the fiber bundle itself has a greater influence, and fiber fracture is the main cause of ultimate material failure. On the other hand, the primary cause of tensile failure is the presence of porosity defects generated during material fabrication. Consequently, the tensile material fails earlier and can withstand lower loads.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3