Influence of tin additions on the corrosion passivation of TiZrTa alloy in sodium chloride solutions

Author:

Sherif El-Sayed M.1

Affiliation:

1. Mechanical Engineering Department, College of Engineering, King Saud University , P.O. Box 800 , Al-Riyadh , 11421 , Saudi Arabia

Abstract

Abstract In this study, the fabrication of Ti-12%Zr-4%Ta-2%Sn alloy, Ti-12%Zr-4%Ta-4%Sn alloy, and Ti-12%Zr-4%Ta-6%Sn alloy using powder metallurgy fabrication technique has been carried out. The influence of Sn addition on the corrosion of these alloys after 30 min and 3 days in 3.5% NaCl solution using various techniques has been reported. The Nyquist spectra revealed that boosting Sn content from 2 to 4% and further to 6% increases the corrosion resistance of the alloy through increasing the diameter of the obtained semicircle. Bode spectra also elucidated that the increased percentage of Sn increases the values of the impedance of the interface |Z| and the maximum degree of the phase angle (Φ). It was indicated from the cyclic polarization curves that the increased Sn content increases the passivation of the alloy through decreasing its rate of corrosion and increasing its corrosion resistance. The measured current over time at −0.10 V showed that the alloy with low Sn content, 2%, records the highest currents, which pronouncedly decreases when Sn content increases to 4% and further to 6%. Prolonging the time of exposure from 30 min to 3 days greatly enhances the passivation of the TiZrTaSn alloys due to the formation of mixed oxides of TiO2, ZrO2, TaO2, and SnO2. The results of these electrochemical measurements were confirmed by the surface investigations carried out by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results collectively proved that the uniform corrosion remarkably decreases with the increase in the Sn% and that the pitting corrosion is not likely to take place.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3