Mechanical property improvement of oil palm empty fruit bunch composites by hybridization using ramie fibers on epoxy–CNT matrices

Author:

Wulan Praswasti Pembangun Dyah Kencana12,Yolanda Yogi2

Affiliation:

1. Department of Chemical Engineering , Faculty of Engineering , Universitas Indonesia , West Java , 16424 , Indonesia

2. Sustainable Energy Research Group , Department of Chemical Engineering , Faculty of Engineering , Universitas Indonesia , West Java , 16424 , Indonesia

Abstract

Abstract Oil palm empty fruit bunches (OPEFBs) can be transformed into composite boards with higher selling value when their cellulose is used as a fiber. Manufacturing composites with hybridization techniques can improve their properties. This study combined OPEFBs and ramie fibers in an epoxy–carbon nanotube (CNT) matrix. The proportion of OPEFBs and ramie fibers was varied (3:7, 5:5, and 7:3), with a total fiber content of 10% by volume and a matrix of 90% by volume. Alkali treatment using NaOH solution was applied to the fiber to remove impurities from the surface. CNTs were functionalized using nitric acid followed by hydrogen peroxide to improve compatibility. Surface treatment was conducted on fibers and CNTs to increase the bonds between these components in the composite material. The hybridization of OPEFBs/ramie fibers improved the tensile strength in the 3:7TR, 5:5TR, and 7:3TR composites by 127, 37, and 12%, respectively, compared to the 10T composite. The flexural strength of the 5:5TR hybrid composite increased by 120%, and that of the 3:7TR and 7:3TR composites increased by 83% against the 10R composite. The 3:7TR hybrid composite showed the best mechanical properties.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3