Affiliation:
1. School of Civil and Architecture Engineering, Nanchang Institute of Technology , Nanchang 330029 , China
Abstract
Abstract
The effect of hydrothermal aging on the impact resistance of foam core sandwich panels is studied in this study. The sandwich panels with glass fiber-reinforced skins and polyurethane foam core were fabricated and then were treated with different hydrothermal aging conditions. The moisture absorption characteristic of the composite skins was evaluated. A modified Fickian formulation was proposed to predict the moisture absorption behavior of composite skins. The low-velocity impact resistance of the aged sandwich panels was determined at three different impact energies. The impact responses including contact force, deflection, and dissipated energy of the sandwich panels with and without hydrothermal aging were analyzed. The macroscopic and microscopic damage morphologies were observed by visual inspection and scanning electron microscope methods, respectively. The damage mechanism of the aged panels was revealed. Results indicate that the impact resistance of aged sandwich panels is degraded, and the performance degradation is larger with increasing aging temperature. Compared to the panel without hydrothermal aging, the reduction of the contact force is 35.69%, and the increase of the deflection is 71.43% for the aged panel at 70°C aging temperature. The fiber/matrix interfacial cohesive performance is degraded resulting from the hydrothermal aging.
Subject
Materials Chemistry,Ceramics and Composites
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献