Modeling and dynamic analysis of functionally graded porous spherical shell based on Chebyshev–Ritz approach

Author:

Lu Jili1,Yang Qingyun1,Meng Zhongliang2,Yang Kang1,Xu Wei1,Chiu Ching Vincent1

Affiliation:

1. College of Mechanical & Electrical Engineering, Zaozhuang University , Zaozhuang , China

2. School of Mechanical Engineering, Shandong University , Shandong , China

Abstract

Abstract This study proposes a unified modeling method to investigate the dynamic behaviors of the functionally graded porous (FGP) spherical shell with elastic boundary conditions. First, three kinds of FGP distributed patterns are defined. Then, the first-order shear deformation theory is selected to build the governing equations of the spherical shell with elastic boundary conditions, which can be solved by the Rayleigh–Ritz approach. Moreover, Chebyshev polynomials of the third kind are selected as an admissible function to express the motion equation. With the constructed model, the correctness is verified by comparing the natural frequency and forced response obtained from both open literature and finite element method. Ultimately, the parameter study is conducted to conclude the effect of the design parameter on the dynamic characteristics of the spherical shell.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3