Modification of mechanical properties of Shanghai clayey soil with expanded polystyrene

Author:

Jili Qu1,Huan Tao2,Weiqing Qu3,Guoqi Han4,Hongmei Liu5,Abulimiti Patanmuhan5,Maimaitiyusupu Semaierjiang1,Batugin Andrian62

Affiliation:

1. Department of Geotechnical Engineering, Faculty of Civil Engineering, Kashi University , Xinjiang, 844000 , China

2. Department of Civil Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology , Shanghai, 200093 , China

3. Department of Geographic Sciences, School of Geographic Sciences, East China Normal University , Shanghai, 200241 , China

4. Department of Structural Engineering, Faculty of Civil Engineering, Kashi University , Xinjiang, 844000 , China

5. Department of Water Supply and Drainage, Faculty of Civil Engineering, Kashi University , Xinjiang, 844000 , China

6. Department of Mining Safety and Ecology, School of Mining Safety, National University of Science and Technology MISIS , Moscow , Russia

Abstract

Abstract In the present study, the resistance characteristics of Shanghai clayey soil-expanded polystyrene (EPS) mixture have been explored, using unconfined compressive and consolidation and rebound tests. EPS beads were mixed homogenously with clay soil in accordance with different mass ratios of beads to soil, that is, 0, 0.02, and 0.03%. Four particle sizes of EPS were used in the mixtures, that is, 0.5, 1, 3, and 7 mm, to reconstruct the samples. The experimental results indicated that (1) under the condition of unconfined compressive test, with the increase of EPS particle size, the compressive strength of reinforced soil increases significantly, but the compressive strength of reinforced soil decreases compared with the control sample, and it also decreases with high content compared to low EPS content; (2) under the consolidation and rebound test, compression index and rebound index of reinforced soil increased obviously compared with the control sample, but the compression modulus of reinforced soil decreases significantly; (3) in addition, the ductility of reinforced soil decreases with the increase of EPS particle size but increases compared with the control sample. At the same time, the stiffness of reinforced soil is much decreased compared with the control sample. Finally, the cause of deformation characteristics of reinforced soil was explained based on the feature of EPS material and the interaction between soil particles and particles of EPS beads.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3