Study on Macroscopic and Mesoscopic Mechanical Behavior of CSG based on Inversion of Mesoscopic Material Parameters

Author:

Guo Lixia123,Zhang Yanan1,Zhong Ling123,Wang Minghua1,Zhu Xuanyi1

Affiliation:

1. North China University of Water Resources and Electric Power,Zhengzhou450045, China

2. Academician workstation of water environment treatment and ecological restoration of Henan Province, Zhengzhou450002; China

3. Key Laboratory of water environment simulation and treatment of Henan Province, Zhengzhou450002, China

Abstract

AbstractCement Sand and Gravel (CSG) is a low-cost, environment-friendly composite material mixed of unscreened aggregate, cement, fly ash and water, and its properties differ from ordinary concrete due to different aggregate characteristics. In order to investigate the effect of aggregate characteristics on the mechanical behavior of CSG, this paper used numerical simulation method to divide the CSG into aggregate unit, cement mortar unit and interface unit at the mesoscopic level and randomly generate aggregate, then used laboratory uniaxial compression test results to inverse the said mesoscopic component parameters, and finally verified the rationality of mesoscopic numerical simulation. Based on the inversed parameters, the numerical simulation test of different aggregate grading was carried out and analyzed. The results showed that: (1) From the perspective of macroscopic mechanical properties, as the sand ratio increased, the aggregate occupancy and the peak stress decreased; under the same aggregate occupancy (the same sand ratio), the stress peak became higher with the improvement of aggregate grading (aggregates of small particle size increased); (2) At the mesoscopic level, the crack of CSG usually appeared on the interface and around the aggregate; the smaller the sand ratio was, the higher the aggregate occupancy was, the more obvious the stress concentration was, and the earlier the cracking of the test piece was, but there were many aggregates, so the eventual failure time was delayed. These research results can provide theoretical basis for engineering design and construction.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

Reference68 articles.

1. Numerical analysis of concrete fracture process and failure mechanism based on meso level;China Safety Science Journal,2006

2. Nonlocal microplane model for fracture, damage, and size effect in structures;J Eng Mech,1990

3. Three dimensional mesoscopic numerical simulation of concrete damage and fracture;J Cent South Univ,2011

4. Meso numerical analysis of high temperature dynamic splitting behavior of concrete;ENG PLAST APPL,2019

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3