Wear and corrosion mechanisms of Ni–WC coatings modified with different Y2O3 by laser cladding on AISI 4145H steel

Author:

Cao Qizheng1,Fan Li2,Chen Haiyan1,Hou Yue3,Dong Lihua1,Ni Zhiwei2

Affiliation:

1. College of Ocean Science and Engineering, Shanghai Maritime University , Shanghai , 201306 , China

2. College of Mechanical and Electronic Engineering, Shanghai Jian Qiao University , Shanghai , 201306 , China

3. School of Materials Science and Engineering, Ocean University of China , Qingdao , 266100 , China

Abstract

Abstract In order to evaluate the effect of rare earth Y2O3 on the wear and corrosion properties of WC–Ni composite coatings, X-ray diffraction, scanning electron microscopy(SEM), electrochemical polarization curve, electrochemical impedance spectroscopy (EIS), and friction and wear tests were used to analyze the metallographic structure, corrosion characteristics in simulated seawater and friction and wear principle of the composite coatings. Results of SEM revealed that the microstructure of the Y2O3 added coatings was refined with the grains changing smaller and the impurity disappearing. The EIS results proved that the addition of Y2O3 brought a positive influence on the corrosion resistance by reducing the capacitance and increasing the R f and R c. The hardness of the coatings with Y2O3 addition tends to be smooth without wild fluctuation, and the coating with 0.5 wt% Y2O3 owned the hardness values reaching 850 HV. With the addition of rare earth elements, the coefficient of fiction values decreased, reaching the lowest (0.3418) at the content of Y2O3 of 0.5 wt%. The surface of the coating without Y2O3 appears grooved due to the abrasive wear; the coatings with Y2O3 did not suffer serious wear and tear. The coating with 0.5 wt% Y2O3 exhibited the best corrosion resistance and wear resistance properties in all the specimens.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3