Low-velocity impact response optimization of the foam-cored sandwich panels with CFRP skins for electric aircraft fuselage skin application

Author:

Yang Kang12,Yang Yong3,Wang Ji1,Fan Xinyue1,He Dongqing1,Lv Zan1

Affiliation:

1. Design Department, Liaoning General Aviation Academy , Shenyang , China

2. College of Aerospace Engineering, Shenyang Aerospace University , Shenyang , China

3. Consulting Div, WISDRI Iron & Steel Engineering & Research Incorporation Limited , Wuhan , 430223 , China

Abstract

Abstract Composite sandwich structures are widely used in the aerospace field due to their advantages of high strength, lightweight, and fatigue resistance. However, these structures are prone to damage with very-low-energy impacts. In order to improve the impact resistance of aircraft skin structure, a low-velocity impact resistance of sandwich structure specimens was tested by means of drop hammer impact, and the impact damage area was scanned by ultrasonic C-scan, and obtains the impact damage of specimens with different impact energies and different ply sequences. Combined with the Hashin failure criterion, the finite element equivalent model of composite sandwich structure under low-velocity impact was established. The errors between the simulation results and the C-scan results of the test piece were less than 10%, in which the experimental measurements and numerical predictions were in close agreement. Finally, the finite element equivalent model was applied to optimize the application of model sandwich, which was used for fuselage skin of a certain electric aircraft. The total thickness of the laminate structure remains unchanged before and after optimization, but the impact resistance was significantly enhanced. The ±45° lay-up was beneficial for the structure to absorb the impact energy.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3