Furanone-functionalized benzothiazole derivatives: synthesis, in vitro cytotoxicity, ADME, and molecular docking studies

Author:

Husain Asif1,Bedi Silky1,Parveen Shazia23,Khan Shah Alam4,Ahmad Aftab5,Iqbal Md Azhar1,Farooq Aasif1,Ahmed Anwar1

Affiliation:

1. Department of Pharmaceutical Chemistry , School of Pharmaceutical Education and Research , Jamia Hamdard , New Delhi 110062 , India

2. Chemistry Department , Faculty of Science, Taibah University , Yanbu Branch, 46423 , Yanbu , Saudi Arabia

3. Department of Chemistry , School of Chemical and Life Sciences , Jamia Hamdard , New Delhi 110062 , India

4. College of Pharmacy, National University of Science and Technology , Muscat , Sultanate of Oman

5. Department of Health Information Technology , Jeddah Community College, King Abdulaziz University , Jeddah 21589 , Saudi Arabia

Abstract

Abstract In the present study, a novel series of new furanone-based benzothiazole derivatives (4a-j) were synthesized from 4-(benzo[d]thiazol-2-yl)-4-oxobutanoic acid (3) as potential anticancer agents. In vitro cytotoxicity against three human cancer cell lines (A549, MCF7, and DUI45) revealed substantial activity. Di-substituted compound, 4i emerged as a promising anticancer compound which showed IC50 values of 7.2 ± 0.5, 6.6 ± 1.4, and 7.3 ± 0.1 µM against A549, MCF7, and DUI45 cell lines, respectively. Four compounds 4c, 4e, 4f, and 4i evaluated for their acute toxicity were found to be non-toxic on the two vital organs (liver and heart). Further, these compounds were found to be more efficient and less hepatotoxic in comparison to standard drug doxorubicin. Molecular docking studies carried out with VEGFR-2 revealed compounds 4a and 4i as potential VEGFR-2 kinase inhibitors. In silico ADME evaluation was carried out to estimate and predict drug-likeness. Compound 4i demonstrated the best ADME parameters. Based on the results of docking analyses, ADME, and in vitro cytotoxicity, compound 4i is identified as the lead compound for further development of anticancer agents.

Publisher

Walter de Gruyter GmbH

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3