Green “one-pot” fluorescent bis-indolizine synthesis with whole-cell plant biocatalysis

Author:

Botezatu Andreea Veronica Dediu1,Bahrim Gabriela Elena2,Ungureanu Claudia Veronica3,Busuioc Anna Cazanevscaia1,Furdui Bianca1,Dinica Rodica Mihaela1

Affiliation:

1. Department of Chemistry, Physics and Environment, “Dunărea de Jos” University of Galati , 111 Domnească Street, 800201 , Galati , Romania

2. Department of Food Science, Food Engineering and Applied Biotechnology, “Dunărea de Jos” University of Galati , 111 Domnească Street, 800201 , Galati , Romania

3. Cross-Border Faculty, “Dunărea de Jos” University of Galati , 800008 Galati , Romania

Abstract

Abstract An efficient one-pot route leading to bis-indolizine symmetric compounds has been developed via a new approach from the dipyridinium heterocyclic compound, reactive halogenated derivative, and activated alkyne through biocatalysis. A set of local plants was evaluated for its catalytic potential in “one-pot” biocatalysis of these valuable fluorescent compound synthesis reactions. Most of these biocatalysts containing enzymes from the oxidoreductase class (peroxidase: 0.56–1.08 mmol purpurogallin‧g−1 fresh weight‧min−1, polyphenol oxidase (PPO) : 27.19–48.95 PPO units‧mg tissue−1, CAT: 3.27–21.71 µmol O2‧g−1 fresh weight‧min−1), were used as green catalysts in the multi-component cycloaddition reaction, in an aqueous buffer solution, for the production of bis-indolizine compounds in moderate to excellent yields (45–85%). The horseradish root (Armoracia rusticana) has been selected as the most promising biocatalyst source among the evaluated plants, and the obtained yields were greater than in the conventional synthesis method. The structures of indolizine derivatives were confirmed by nuclear magnetic resonance spectra, elemental analyses, as well as Fourier transform-infrared spectra. The cytotoxicity of the latter obtained indolizine compounds on the growth of the model microorganism, Saccharomyces cerevisiae MIUG 3.6 yeast strain, was also evaluated. Various parameters (number of generations, growth rate, generation time, dry matter yield, the degree of the budding yeast cells, and the degree of yeast autolysis, fermentation intensity), which describe the yeast growth, suggest that the nutrient broth supplemented with different concentrations of bis-indolizine compounds (10 and 1 µM) had no toxic effect on the yeast strain growth, under submerged cultivation conditions.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3