Zinc oxide-manganese oxide/carboxymethyl cellulose-folic acid-sesamol hybrid nanomaterials: A molecularly targeted strategy for advanced triple-negative breast cancer therapy

Author:

Zhao Chunming1,Pan Xueqiang2,Li Xiao2,Li Meixia2,Jiang Rui2,Li Yuyang3

Affiliation:

1. Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University , Jinan 250021, Shandong , China

2. Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University , Jinan 250021, Shandong , China

3. Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University , No. 324 Jing Wu Road , Jinan 250021 , China

Abstract

Abstract Multifunctional nanocomposites (NC) can greatly enhance therapy outcomes by reducing tumor proliferative potential. We created a novel class of Zn_Mn_CMC_FA_sesamol NC in the current work to combat breast cancer (MDA-MB-231) cells. To understand how zinc (Zn), manganese (Mn), carboxymethylcellulose, and folic acid (FA) interact with sesamol, UV-Visible spectrophotometer and Fourier Transform Infrared spectroscopy were used to analyze the absorption behavior of the synthesized NC. The particle size of NC was confirmed by X-ray diffraction and dynamic light scattering. Scanning electron microscopy was used to assess the morphological features of these NCs. photoluminescence spectrum was used to analyze the optical and electron transition molecules of the sample. In addition to MTT analysis, acridine orange/ethidium bromide (AO/EtBr) analysis of reactive oxygen species (ROS) and nuclear staining with 4′,6-diamidino-2-phenylindole as well as flow cytometry were used to confirm the apoptotic activity of Zn_Mn_CMC_FA_sesamol NC on MDA-MB-231 cells. The results showed significant cytotoxicity, apoptosis induction on AO/EtBr, and increased ROS production in treated cells compared to control cells. The cell cycle analysis revealed that NCs triggered apoptosis and arrested the cell cycle in G0/G1 phases. As a conclusion, the created NC serves as a versatile platform for the successful molecularly targeted chemotherapeutic treatment of cancer.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3