Green synthesis of silver nanoparticles using Illicium verum extract: Optimization and characterization for biomedical applications

Author:

Velmurugan Palanivel1,Muruganandham Moorthy1,Sivasubramanian Kanagasabapathy1,Mohanavel Vinayagam1,Chinnathambi Arunachalam2,Alharbi Sulaiman Ali2,Basavegowda Nagaraj3

Affiliation:

1. Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research , Chennai-600073 , Tamil Nadu India

2. Department of Botany and Microbiology, College of Science, King Saud University , PO Box-2455 , Riyadh-11451 , Saudi Arabia

3. Department of Biotechnology, Yeungnam University , Gyeongsan 38541 , Republic of Korea

Abstract

Abstract The synthesis of noble metal nanoparticles is currently experiencing substantial development and considerable attention. Plant extracts are commonly used for the biological synthesis of nanoparticles because they contain biologically active constituents. In our present study, silver nanoparticles (AgNPs) were synthesized using an aqueous Illicium verum (Star anise) extract to evaluate their antimicrobial, antioxidant, and cytotoxicity activities. For maximum yields of AgNPs, the extract (2.5 ml), silver ions (500 µM), and pH (8) were shown to be the ideal nanoparticle production parameters. The visual colour shifted from pale brown to dark brown when the ultraviolet-visible spectrophotometer was used to validate the synthesis of AgNPs. A transmission electron microscope was utilized to evaluate nanoparticles’ physical nature. The presence of silver metal with face-centred cubic symmetry was confirmed by X-ray diffraction analysis. Fourier-transform infrared spectroscopy was used to identify the functional groups in charge of reducing silver ions (Ag+) and the stability of AgNPs produced using the I. verum aqueous extract. The agar well diffusion method investigated the antibacterial activity of I. verum silver nanoparticles (Iv-AgNPs) against pathogenic bacteria and fungi. At higher doses (100 µg·mL−1), the highest zone of inhibition was observed, and spherical AgNPs demonstrated the antibacterial activity. The I. verum extract and Iv-AgNPs enhanced (70%) their free radical scavenging activity at 500 µg·mL−1 according to the 2,2-diphenyl-1-picrylhydrazyl assay. Moreover, the cytotoxicity of Iv-AgNPs against the HCT-116 human colon cancer cell line indicated cell inhibition in a dose-dependent manner. Ultimately, the findings of this study indicate that techniques used to produce AgNPs are environmental friendly, cost-effective, harmless, uncomplicated, and can effectively tackle a broad spectrum of medical and nutritional concerns.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3