Graphene oxide/chitosan/manganese/folic acid-brucine functionalized nanocomposites show anticancer activity against liver cancer cells

Author:

Alzahrani Abdullah R.1,Ibrahim Ibrahim Abdel Aziz1,Alanazi Ibrahim M.1,Shahzad Naiyer1,Shahid Imran1,Nur Azlina Mohd Fahami2,Kamisah Yusof2,Ismail Nafeeza Mohd3,Arulselvan Palanisamy4

Affiliation:

1. Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University , Makkah , Saudi Arabia

2. Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia

3. Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA , Sungai Buloh Campus , Selangor , Malaysia

4. Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University , Chennai , Tamil Nadu, 602 105 , India

Abstract

Abstract Nanomedicine is the application of nanomaterials and nanotechnology to the development of novel pharmaceuticals and drug delivery mechanisms. The present study synthesized a functionalized nanocomposite (NC) containing graphene oxide (GO), chitosan (Ch), manganese (Mn), folic acid (FA), and brucine. The anticancer properties of the synthesized GO/Mn/Ch/FA-Brucine NCs were evaluated against liver cancer cells. GO/Mn/Ch/FA-Brucine NCs were characterized using several characterization techniques. The growth of HepG2 and Hep3B cells was analyzed using the methylthiazolyldiphenyl-tetrazolium bromide assay. The cell apoptosis was examined through dual staining. The levels of inflammatory and oxidative stress biomarkers were measured using the corresponding assay kits. Various characterization assays revealed the formation of crystalline GO/Mn/Ch/FA-Brucine NCs with tetragonal and agglomerated morphologies, various stretching and bonding, and an average particle size of 136.20 nm. GO/Mn/Ch/FA-Brucine NCs have effectively inhibited the viabilities of HepG2 and Hep3B cells. The NCs increased thiobarbituric acid reactive substances and reduced antioxidants and inflammatory mediators, thereby promoting apoptotic cell death in HepG2 cells. Our findings indicate that GO/Mn/Ch/FA-Brucine NCs can inhibit viability and promote apoptosis in liver cancer HepG2 cells.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3