The enhanced adsorption properties of phosphorus from aqueous solutions using lanthanum modified synthetic zeolites

Author:

He Dongsheng12,Chen Beibei1,Tang Yuan1,Li Qianqian1,Zhang Kecheng13,Li Zhili1,Xu Changming1

Affiliation:

1. School of Resources and Safety Engineering, Wuhan Institute of Technology , Wuhan 430073 , China

2. Hubei Three Gorges Laboratory , Yichang 443007 , China

3. Hubei Engineering Design & Research Institute Co. Ltd. , Wuhan 430071 , China

Abstract

Abstract In this study, a modified synthetic zeolite adsorbent was synthesized by the hydrothermal method using coal fly ash as the main raw material, and the enhanced phosphorus adsorption properties from aqueous solutions were then evaluated. The modification parameters were specifically studied and optimized. Moreover, the effects of initial phosphorus concentration, adsorption time, and pH value on phosphorus absorption were also investigated. The adsorbent was characterized by the energy-dispersive spectrometer analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy. Furthermore, the phosphorus adsorption properties of the zeolite adsorbent were preliminarily discussed through the perspectives of isothermal adsorption experiments, adsorption kinetics experiments, and adsorption thermodynamics calculations. The results show that the lanthanum ions were physically loaded on the surface and micropores of the adsorbent after modification, which helps to enhance the adsorption effect of phosphorus components from the aqueous solution. The phosphorus removal rate has been increased by about 65%. The adsorption process better fitted the Langmuir and Elovich equations. The theoretical calculation and analysis of adsorption thermodynamics showed that the adsorption and removal of phosphorus in water happens spontaneously.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3