Micro-impact-induced mechano-chemical synthesis of organic precursors from FeC/FeN and carbonates/nitrates in water and its extension to nucleobases

Author:

Kugimiya Koichi1,Asai Kenji1,Harada Takashi2,Furukawa Yoshihiro3,Naito Makio4

Affiliation:

1. Kurimoto, Ltd. , 1-12-19 Kitahorie, Nishiku , Osaka 559-0021 , Japan

2. Research Center for Solar Energy Chemistry, Osaka University , 1-3 Machikaneyama, Toyonaka , Osaka 560-8531 , Japan

3. Department of Earth and Planetary Materials Science, Graduate School of Science, Tohoku University , Sendai , 980-8578 , Japan

4. Joining and Welding Research Institute, Osaka University , 11-1 Mihogaoka, Ibaraki , Osaka 567-0047 , Japan

Abstract

Abstract Much effort was taken to elucidate how organic precursors appeared in early Earth, and attention was paid to two impact experiments: hypervelocity impacts by a propellant gun which simulated meteorite collides to Earth forming fatty acids and amino acids from inorganics, and micro-impacts by a planetary ball-mill which formed ammonium and acetic acid from inorganics. Our extended study on micro-impacts showed the formation of carboxylic acids, amines, and amino acids from Fe3C/Fe4N, carbon, and carbonates/nitrates by milling up to 30 h at 40 G. Fe(CO2)2·2H2O accelerated the formation a step further. Cu addition caused superior capability to form amines and amino acids. Two reaction fields were disclosed. In the impact field, the hydration of ferrous materials generated hydrogen which hydrogenated inorganic carbons to organics and ferrous transient materials and, in the maturing field, hydrogenated materials were then transformed into complex organics. Iron and CO2 were presumably the key components in the Hadean Ocean. Discussions on the mechano-chemical reaction were extended to serpentinization coupled with diastrophism of oceanic crusts and further led to a depiction that organic precursors were formed by micro-impacts and frictions of rocks and sands (like milling-balls) due to tremors in crusts. It provides a new path on how organic precursors were formed on the aqua-planet Earth.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3