A study of the anticancer potential of Pluronic F-127 encapsulated Fe2O3 nanoparticles derived from Berberis vulgaris extract

Author:

Alzahrani Abdullah R.1

Affiliation:

1. Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University , Makkah 77207 , Saudi Arabia

Abstract

Abstract The study synthesized Pluronic F-127 nanoparticles that encapsulate Fe2O3 (PF127Fe2O3NPs), nanoparticles, characterized their formation, and evaluated their cytotoxicity and anticancer activity using Berberis vulgaris leaf extract, using various analytical methods such as FTIR, Ultraviolet-visible, photoluminescence, dynamic light scattering, X-ray diffraction, and morphology analysis. We assessed the antioxidant properties of PF127Fe2O3NPs, cytotoxicity, and apoptosis through 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and acridine orange/ethidium bromide staining in breast cancer cells, such as MCF7, and MDA-MB-231. The characterization results demonstrated that PF-127 was coated with Fe2O3 nanoparticles. MTT assay data revealed that PF127Fe2O3NPs effectively prevent cancer cells from proliferating and act as an anticancer drug. The antimicrobial results revealed that the fabricated nanoparticles are effective against gram-negative (Klebsiella pneumoniae, Escherichia coli, and Shigella dysenteriae) and gram-positive (Streptococcus pneumoniae, Staphylococcus aureus, and Bacillus subtilis) bacteria. Treatment of PF127Fe2O3NPs in a dose-dependent manner on MCF7, and MDA-MB-231, exhibited increased antioxidant activity, nuclear damage, and apoptotic activity. These results confirm the apoptotic activity of PF127Fe2O3NPs. The study concludes that MCF7 appears to be more sensitive to PF127Fe2O3NPs than MDA-MB-231. In conclusion, we have found that it can be used as an effective antioxidant and anticancer agent in therapeutics.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3