Green-processed nano-biocomposite (ZnO–TiO2): Potential candidates for biomedical applications

Author:

Ahmed Naireen1,Tanveer Kiran1,Younas Zohaib1,Yousaf Tayyaba1,Ikram Muhammad1,Raja Naveed Iqbal1,Mashwani Zia-ur-Rehman1,Alghamdi Saad2,Al-Moraya Issa Saad3,Shesha Nashwa Talaat4

Affiliation:

1. Department of Botany, PMAS Arid Agriculture University , Rawalpindi , Pakistan

2. Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University , Makkah , Saudi Arabia

3. Forensic Medicine Center, Ministry of Health , Abha , Saudi Arabia

4. Hera General Hospital, Directorate of Health Affairs , Makkah , Saudi Arabia

Abstract

Abstract Nanotechnology investigates different promising methodologies in the space of material sciences on a sub-atomic level. Novel methodologies are expected for the accomplishment of protected and successful helpful medicines past the traditional ones, and society needs new prerequisites for innovations, moving towards perfect and green innovation improvement. This review study deals with topics related to green nanotechnology for the investigation of different assays such as anticancer, antidiabetic, anti-larval, and microbial. The confirmation of nanocomposite will be conformed using scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction to determine the size, shape, and supporting material to stabilize and cap the agent. However, the biomedical application of the ZnO/TiO2 nanocomposite is also discussed. Furthermore, to their remarkable biocompatibility, ZnO/TiO2 has shown significant potential in bio-imaging, tissue engineering, and drug delivery. The biological activities of the green-produced nanoparticles are strong and they are employed in several biological applications across various assays. The current review covers the creation and most recent developments of bio-nanocomposite materials from plant sources (such as leaves, stems, bark, roots, rhizomes, fruits, flowers, and seeds), as well as their anti-cancer, diabetes-related, and anti-larval activities. This is followed by a thorough discussion of their mechanisms of action.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3