Inhibiting wood-water interactions by hydrothermal hemicellulose extraction combined with furfurylation

Author:

Tiantian Yang12,Ma Erni3,Mei Changtong12,Cao Jinzhen3ORCID

Affiliation:

1. College of Materials Science and Engineering, Nanjing Forestry University , Nanjing , 210037 , China

2. Co-Innovation Center of Efficient Processing and Utilization of Forest Resources , Nanjing Forestry University , Nanjing , 210037 , China

3. MOE Key Laboratory of Wooden Material Science and Application , Beijing Forestry University , Beijing , 100083 , China

Abstract

Abstract Wood-water interactions affect durability and performance of wood products, such as dimensional stability and biodegradation. To upgrade wood, a combined modification via hemicellulose extraction and furfurylation was proposed to inhibit wood-water interactions. More intense hemicellulose extraction caused larger voids and led to higher pore volume. The increment of porosity resulted in more uniform distribution of polymerized furfural resin in cells, as indicated by scanning electron microscopic and confocal laser scanning microscopic observations. The combined modification greatly reduced surface wettability with an increase of water contact angle (CA) of over 134% at 100 s. With hemicellulose extraction, polymerized furfural resin partially occupied the accommodation initially for water molecules and reduced accessible sorption sites, causing water absorption (WA) of wood to decrease by over 30% after soaking in water for 768 h. Dynamic moisture sorption was weakened after combined modification, and the moderate hemicellulose extraction combined with furfurylation reduced the moisture content by over 50% due to incorporative changes of chemical sorption sites and physical porosity. The results confirmed the efficiency of the combined modification in inhibiting wood-water interactions and indicated the importance to accurately control hemicellulose content during modification. This study could provide useful information for sustainably enhancing wood performance and upgrading low-quality wood.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3