Dynamic modulus of elasticity in flexural vibration tests of Pinus sylvestris sawn timber obtained with fundamental resonant frequency and overtones

Author:

Villasante Antonio1ORCID,Fernández-Serrano Álvaro1ORCID

Affiliation:

1. Department of Agricultural and Forest Engineering , University of Lleida , Av. Rovira Roure, 191, 25198 , Lleida , Spain

Abstract

Abstract The use of resonant frequency is presently one of the most used non-destructive testing (NDT) methods to predict the mechanical properties of sawn timber. In most cases, only the first vibration mode is used to estimate the static modulus of elasticity (MOES). The use of other vibration modes (overtones) can improve the predictive capacity of this NDT. In this study, the dynamic modulus of elasticity (MOEdyn) obtained from the fundamental flexural resonant frequency and overtones of 38 structural size samples (2000 × 100 × 70 mm3) of Pinus sylvestris were analysed. The study was complemented with 16 small size samples (1000 × 20 × 8.7 mm3) of the same species to know the shear effect in samples with a very high length-to-depth ratio. For the structural size samples, a 6% decrease in the MOEdyn was detected each time the vibration mode increased. Using the second or third vibration mode offered lower errors in the prediction of the MOES than the fundamental resonant frequency. The lowest MOES prediction errors were obtained combining various vibration modes through power regression. This regression turned out to be a simple alternative to avoid the shear effect in the calculation of the MOEdyn.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3