Performances of the sandwich panel structures under fire accident due to hydrogen leaks: Consideration of structural design and environment factor using FE analysis

Author:

Nurcholis Arifin12,Prabowo Aditya Rio1,Muhayat Nurul1,Yaningsih Indri1,Tjahjana Dominicus Danardono Dwi Prija1,Jurkovič Martin3,Sohn Jung Min4,Adiputra Ristiyanto5,Hanif Muhammad Imaduddin12,Ridwan Ridwan6

Affiliation:

1. Department of Mechanical Engineering, Universitas Sebelas Maret , Surakarta 57126 , Indonesia

2. Laboratory of Design and Computational Mechanics, Faculty of Engineering, Universitas Sebelas Maret , Surakarta 57126 , Indonesia

3. Faculty of Operation and Economics of Transport and Communication, University of Zilina , Zilina 01026 , Slovakia

4. Department of Naval Architecture and Marine Systems Engineering, Pukyong National University , Busan 48513 , South Korea

5. Research Center for Hydrodynamics Technology, National Research and Innovation Agency (BRIN) , Surabaya 60112 , Indonesia

6. Department of Mechanical Engineering, Universitas Merdeka Madiun , Madiun 63133 , Indonesia

Abstract

Abstract This study presents a comprehensive analysis using the finite element method (FEM) to examine and evaluate the behavior of fuel carrier ship structure. Sandwich panels are effective structures for use in ship structures due to their lightweight yet robust nature. Sandwich panels used in ship structures have various core shapes, such as hexagonal, circular, and square, as needed. The sandwich panel structure can be widely implemented in ship construction, for example, on the deck, hull, and bulkhead of the ship’s cabin. Hydrogen is an alternative fuel that can replace fossil fuels. In this modern era, hydrogen is high valuable energy commodity, so accidents involving carrier ships could have significant consequences. Hydrogen is produced from liquefied natural gas (LNG), so if a leak occurs, for instance, in a storage tank or fuel tank, it has the potential to lead to accidents such as fires. Corrosion is a significant concern for the maritime industry, as it can jeopardize the structural integrity of these vessels and pose substantial safety and environmental risks. In this research, FEM was utilized to model and simulate the effects of corrosion on hydrogen carrier ships when exposed to fire, considering various environmental and operational factors. Through a systematic investigation, it is aimed to gain insights into the impact of corrosion on ship structural components during fires, such as hulls and storage tanks. The result of this study will contribute to improving corrosion and fire mitigation strategies, ensuring the safety and longevity of hydrogen and LNG carrier ships, and supporting the sustainable transportation of hydrogen to meet global energy demands. No research has been conducted on the structural behavior resulting from hydrogen fires and corrosion simultaneously. To achieve this, it is assumed to use the corrosion properties of steel in heavily traveled ship routes such as the Panama Canal Zone, Barent Sea, North Sea, and Suez Canal Zone. This study utilized an approach by modeling corrosion using shell thickness in Abaqus Quasi-Static and applying boundary conditions in the form of temperature increase up to 800°C and subsequent cooling back to the initial temperature. At the maximum temperature, the most significant mid-span displacement occurred in the circular core sandwich panel, with a value of 4 mm. The axial force in the structure was inversely proportional to the mid-span displacement. In the case of the circular core sandwich panel, the axial force was 96 kN. The most resilient core type was hexagonal because it experiences the least deformation when compared to circular and square cores.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3