Affiliation:
1. Chapman University , Schmid College of Science and Technology One University Drive Orange , CA 92866 and Institut de Mathématiques de Bordeaux , Université Bordeaux I , 351 Cours de la Libération 33405 Talence Cedex.
Abstract
Abstract
This paper reviews, from different points of view, results on Bernoulli numbers and polynomials, the distribution of prime numbers in connexion with the Riemann hypothesis. We give an account on the theorem of G. Robin, as formulated by J. Lagarias. The other parts are devoted to the series
i
s
(
z
)
=
∑
n
=
1
∞
μ
(
n
)
n
s
z
n
$\mathcal{M}{i_s}(z) = \sum\limits_{n = 1}^\infty {{{\mu (n)} \over {{n^s}}}{z^n}} $
. A significant result is that the real part f of
∑
μ
(
n
)
n
e
2
i
n
π
θ
$$\sum {{{\mu (n)} \over n}{e^{2in\pi \theta }}}$$
is an example of a non-trivial real-valued continuous function f on the real line which is 1-periodic, is not odd and has the property
∑
h
=
1
n
f
(
h
/
k
)
=
0
$\sum\nolimits_{h = 1}^n {f(h/k) = 0}$
for every positive integer k.
Subject
Applied Mathematics,Control and Optimization,Numerical Analysis,Analysis
Reference59 articles.
1. [1] Arakawa, T., Ibukiyama, T. and Kaneko, M. Bernoulli Numbers and Zeta Functions, Springer, Tokyo, 2014.
2. [2] Ablowitz, M., Chakravarty, S., and Takhtajan, L. Integrable systems, self-dual Yang-Mills equations and connections with modular forms, Univ. Colorado Preprint PAM # 113 (December 1991).
3. [3] P. T. Bateman, P. T. Chowla, S. Some special trigonometric series related to the distribution of prime numbers, J. London Math. Soc. 38 (1963), 372-374.
4. [4] Berndt, B.C., Dixit, A., Kim, S. and Zaharescu. A. Sums of squares and products of Bessel functions, Advances in Mathematics, Vol. 338 (2018) 305-338.
5. [5] Berndt, B.C., Evans, R.J. Chapter 7 of Ramanujan’s second note book, Proc. Indian Acad. Sci. (Math. Sci.), 92 (1983), 67-96.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献