Harmonic numbers, harmonic series and zeta function

Author:

Sebbar Ahmed1

Affiliation:

1. Chapman University , Schmid College of Science and Technology One University Drive Orange , CA 92866 and Institut de Mathématiques de Bordeaux , Université Bordeaux I , 351 Cours de la Libération 33405 Talence Cedex.

Abstract

Abstract This paper reviews, from different points of view, results on Bernoulli numbers and polynomials, the distribution of prime numbers in connexion with the Riemann hypothesis. We give an account on the theorem of G. Robin, as formulated by J. Lagarias. The other parts are devoted to the series 𝒨 i s ( z ) = n = 1 μ ( n ) n s z n $\mathcal{M}{i_s}(z) = \sum\limits_{n = 1}^\infty {{{\mu (n)} \over {{n^s}}}{z^n}} $ . A significant result is that the real part f of μ ( n ) n e 2 i n π θ $$\sum {{{\mu (n)} \over n}{e^{2in\pi \theta }}}$$ is an example of a non-trivial real-valued continuous function f on the real line which is 1-periodic, is not odd and has the property h = 1 n f ( h / k ) = 0 $\sum\nolimits_{h = 1}^n {f(h/k) = 0}$ for every positive integer k.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Control and Optimization,Numerical Analysis,Analysis

Reference59 articles.

1. [1] Arakawa, T., Ibukiyama, T. and Kaneko, M. Bernoulli Numbers and Zeta Functions, Springer, Tokyo, 2014.

2. [2] Ablowitz, M., Chakravarty, S., and Takhtajan, L. Integrable systems, self-dual Yang-Mills equations and connections with modular forms, Univ. Colorado Preprint PAM # 113 (December 1991).

3. [3] P. T. Bateman, P. T. Chowla, S. Some special trigonometric series related to the distribution of prime numbers, J. London Math. Soc. 38 (1963), 372-374.

4. [4] Berndt, B.C., Dixit, A., Kim, S. and Zaharescu. A. Sums of squares and products of Bessel functions, Advances in Mathematics, Vol. 338 (2018) 305-338.

5. [5] Berndt, B.C., Evans, R.J. Chapter 7 of Ramanujan’s second note book, Proc. Indian Acad. Sci. (Math. Sci.), 92 (1983), 67-96.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3