Plasma Calcium Concentration Modifies the Blood Sodium During Hemodialysis: Lessons from Hard Water Syndrome

Author:

Viggiano Davide12,Anastasio Pietro3

Affiliation:

1. Department of Cardio-Thoracic and Respiratory Science, Second University of Naples , Italy

2. Deptartment of Medicine and Health Sciences, University Molise, Campobasso , Italy

3. Department of Cardio-Thoracic and Respiratory Science, Second University of Naples, Naples , Italy

Abstract

Abstract Introduction. Extracellular sodium (Na+) concentration is maintained within a tight physiological range due to hormonal control, that mainly modulates thirst, Na+ and water renal excretion. Extra-renal regulation of Na+ and water homeostasis is only partially understood. Recently it has been debated whether the osmotically inactive Na+ storage is fixed or variable. Methods. In the present study, fourteen End-Stage Renal Disease (ESRD) patients treated by chronic hemodialysis underwent by accident to a sharp increase in plasmatic calcium (Ca+2) levels due to the failure of the water control system, leading to the so-called hard water syndrome. The levels of plasmatic Ca+2 after 1 hr of hemodialysis were correlated with urea, Na+, potassium (K+) and creatinine levels. Eleven ESRD patients treated with hemodialysis under similar conditions were used as controls. Results. The hard water syndrome resulted in hypercalcemia, while mean plasma levels of Na+, K+ and urea were not different compared to controls. Plasma creatinine levels were slightly but significantly higher that control. A correlation analysis on the measured variables has showed a positive correlation between plasma Ca+2 and Na+ levels (Pearson=0.428, p=0.032), and the absence of any correlation with K+, creatinine and urea concentration. Conclusions. Our study suggests that acute changes in plasmatic Ca+2 levels may affect Na+ concentration in the absence of renal function; it is possible that hypercalcemia may trigger Na+ release from the osmotically inactive storage. These data further support previous observations on the interplay of sodium and calcium at extrarenal sites.

Publisher

Walter de Gruyter GmbH

Subject

Transplantation,Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3