Translational radionanomedicine: a clinical perspective

Author:

Choi Hongyoon,Lee Yun-Sang,Hwang Do Won,Lee Dong Soo

Abstract

AbstractMany nanomaterials were developed for the anticipated in vivo theranostic use exploiting their unique characteristics as a multifunctional platform. Nevertheless, only a few nanomaterials are under investigation for human use, most of which have not entered clinical trials yet. Radionanomedicine, a convergent discipline of radiotracer technology and use of nanomaterials in vivo, can facilitate clinical nanomedicine because of its advantages of radionuclide imaging and internal radiation therapy. In this review, we focuse on how radionanomedicine would impact profoundly on clinical translation of nanomaterial theranostics. Up-to-date advances and future challenges are critically reviewed regarding the issues of how to radiolabel and engineer radionanomaterials, in vivo behavior tracing of radionanomaterials and then the desired clinical radiation dosimetry. Radiolabeled extracellular vesicles were further discussed as endogenous nanomaterials radiolabeled for possible clinical use.

Funder

Ministry of Health and Welfare

National Research Foundation of Korea

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3