The Emission Coefficient of the Continuum in an Argon and Nitrogen Plasma at High Temperatures

Author:

Erhardt K.1,Meyer I.1,Stritzke P.1

Affiliation:

1. Institut für Angewandte Physik, University of Hamburg

Abstract

Abstract The continuum emission of an argon-and nitrogen plasma developed in an electrical discharge has been investigated in the wavelength range from 3000 Å to 6700 Å. To this purpose the time-and radial dependent plasma parameters such as temperature and the total pressure have been determined in the high conducting stage of the spark by measuring several line intensities. The continuum coefficient was calculated from these data according to the Kramers-Unsöld theory. The comparison of the theoretical and the measured values shows deviations which are discussed. In the case of the argon continuum the ξ-factors for T = 14 000 K agree with the calculated values of Schlüter and the experimental ones of Schulz-Gulde. In the case of the nitrogen plasma the ξ-fac­tors have been determined in the temperature interval from 18 000 K to 45 000 K. Since at these temperatures the particles NII-NIV contribute to the total continuum coefficient, the measured ξ-factors can only be correlated to ξII, ξIII, ... in a narrow temperature range. The measured cor­rection factor ξ for λ = 5050 Å has been applied to determine the temperatures and the pressure of a laser produced spark. The plasma parameters agree with those determined by measuring the line-intensity of the NII-line at 5000 A.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The continuum emission of an arc plasma;Journal of Quantitative Spectroscopy and Radiative Transfer;1991-01

2. Calculation of radiation from argon shock layers;Journal of Quantitative Spectroscopy and Radiative Transfer;1982-07

3. Emission continua of rare gas plasmas;Journal of Quantitative Spectroscopy and Radiative Transfer;1978-03

4. Spatial and temporal spectroscopy of a streamer discharge in nitrogen;Journal of Physics D: Applied Physics;1977-11-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3