Abstract
Abstract
Dirichlet- and Neumann-type boundary value problems of statics are considered in three-dimensional domains with cuspidal edges filled with a homogeneous anisotropic medium. Using the method of the theory of a potential and the theory of pseudodifferential equations on manifolds with boundary, we prove the existence and uniqueness theorems in Besov and Bessel-potential spaces, and study the smoothness and a complete asymptotics of solutions near the cuspidal edges.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献