Big pure projective modules over commutative noetherian rings: Comparison with the completion

Author:

Herbera Dolors1ORCID,Příhoda Pavel2ORCID,Wiegand Roger3ORCID

Affiliation:

1. Departament de Matemàtiques , 530984 Universitat Autònoma de Barcelona ; and Centre de Recerca Matemàtica, 08193 Bellaterra (Barcelona) , Spain

2. Department of Algebra , Faculty of Mathematics and Physics , Charles University , Sokolovská 83, 18675 Praha 8 , Czech Republic

3. Department of Mathematics , 14719 University of Nebraska , Lincoln , NE 68588-0130 , USA

Abstract

Abstract A module over a ring R is pure projective provided it is isomorphic to a direct summand of a direct sum of finitely presented modules. We develop tools for the classification of pure projective modules over commutative noetherian rings. In particular, for a fixed finitely presented module M, we consider Add ( M ) {\operatorname{Add}(M)} , which consists of direct summands of direct sums of copies of M. We are primarily interested in the case where R is a one-dimensional, local domain, and in torsion-free (or Cohen–Macaulay) modules. We show that, even in this case, Add ( M ) {\operatorname{Add}(M)} can have an abundance of modules that are not direct sums of finitely generated ones. Our work is based on the fact that such infinitely generated direct summands are all determined by finitely generated data. Namely, idempotent/trace ideals of the endomorphism ring of M and finitely generated projective modules modulo such idempotent ideals. This allows us to extend the classical theory developed to study the behaviour of direct sum decomposition of finitely generated modules comparing with their completion to the infinitely generated case. We study the structure of the monoid V * ( M ) {V^{*}(M)} , of isomorphism classes of countably generated modules in Add ( M ) {\operatorname{Add}(M)} with the addition induced by the direct sum. We show that V * ( M ) {V^{*}(M)} is a submonoid of V * ( M R R ^ ) {V^{*}(M\otimes_{R}\widehat{R})} , this allows us to make computations with examples and to prove some realization results.

Funder

Ministerio de Ciencia, Innovación y Universidades

Agència de Gestió d’Ajuts Universitaris i de Recerca

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3