On cutting blocking sets and their codes

Author:

Bartoli Daniele1,Cossidente Antonio2,Marino Giuseppe3,Pavese Francesco4ORCID

Affiliation:

1. Dipartimento di Matematica e Informatica , Università di Perugia , Perugia , Italy

2. Dipartimento di Matematica, Informatica ed Economia , Università degli Studi della Basilicata , Contrada Macchia Romana, 85100 , Potenza , Italy

3. Dipartimento di Matematica e Applicazioni “Renato Caccioppoli” , Università degli Studi di Napoli “Federico II” , Complesso Universitario di Monte Sant’Angelo, Cupa Nuova Cintia 21, 80126 , Napoli , Italy

4. Dipartimento di Meccanica, Matematica e Management , Politecnico di Bari , Via Orabona 4, 70125 Bari , Italy

Abstract

Abstract Let PG ( r , q ) {\operatorname{PG}(r,q)} be the r-dimensional projective space over the finite field GF ( q ) {\operatorname{GF}(q)} . A set 𝒳 {\mathcal{X}} of points of PG ( r , q ) {\operatorname{PG}(r,q)} is a cutting blocking set if for each hyperplane Π of PG ( r , q ) {\operatorname{PG}(r,q)} the set Π 𝒳 {\Pi\cap\mathcal{X}} spans Π. Cutting blocking sets give rise to saturating sets and minimal linear codes, and those having size as small as possible are of particular interest. We observe that from a cutting blocking set obtained in [20], by using a set of pairwise disjoint lines, there arises a minimal linear code whose length grows linearly with respect to its dimension. We also provide two distinct constructions: a cutting blocking set of PG ( 3 , q 3 ) {\operatorname{PG}(3,q^{3})} of size 3 ( q + 1 ) ( q 2 + 1 ) {3(q+1)(q^{2}+1)} as a union of three pairwise disjoint q-order subgeometries, and a cutting blocking set of PG ( 5 , q ) {\operatorname{PG}(5,q)} of size 7 ( q + 1 ) {7(q+1)} from seven lines of a Desarguesian line spread of PG ( 5 , q ) {\operatorname{PG}(5,q)} . In both cases, the cutting blocking sets obtained are smaller than the known ones. As a byproduct, we further improve on the upper bound of the smallest size of certain saturating sets and on the minimum length of a minimal q-ary linear code having dimension 4 and 6.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference31 articles.

1. G. N. Alfarano, M. Borello and A. Neri, A geometric characterization of minimal codes and their asymptotic performance, Adv. Math. Commun. (2020), 10.3934/amc.2020104.

2. G. N. Alfarano, M. Borello, A. Neri and A. Ravagnani, Three combinatorial perspectives on minimal codes, preprint (2020), https://arxiv.org/abs/2010.16339.

3. R. D. Baker, J. M. N. Brown, G. L. Ebert and J. C. Fisher, Projective bundles, Bull. Belg. Math. Soc. Simon Stevin 1 (1994), 329–336.

4. D. Bartoli, G. Kiss, S. Marcugini and F. Pambianco, Resolving sets for higher dimensional projective spaces, Finite Fields Appl. 67 (2020), Article ID 101723.

5. D. Bartoli, G. Micheli, G. Zini and F. Zullo, r-fat linearized polynomials over finite fields, preprint (2020), https://arxiv.org/abs/2012.15357.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strong blocking sets and minimal codes from expander graphs;Transactions of the American Mathematical Society;2024-06-11

2. Outer Strong Blocking Sets;The Electronic Journal of Combinatorics;2024-04-19

3. On the lower bound for the length of minimal codes;Discrete Mathematics;2024-01

4. Minimal Linear Codes Constructed from Sunflowers;Entropy;2023-12-18

5. Minimal linear codes constructed from partial spreads;Cryptography and Communications;2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3