Affiliation:
1. Tata Institute of Fundamental Research , Centre for Applicable Mathematics , Bangalore , Karnataka, 560065 , India
Abstract
Abstract
We prove local Lipschitz regularity for bounded minimizers of functionals with nonstandard
(
p
,
q
)
{(p,q)}
-growth with the source term in the Lorentz space
L
(
N
,
1
)
{L(N,1)}
under the restriction
q
<
p
+
1
+
p
min
{
1
N
,
2
(
p
-
1
)
N
p
-
2
p
+
2
}
.
q<p+1+p\min\Bigl{\{}\frac{1}{N},\frac{2(p-1)}{Np-2p+2}\Bigr{\}}.
This extends the recent work by Beck and Mingione to bounded minimizers under weaker hypothesis and is sharp for some special ranges of p, q and N.
Subject
Applied Mathematics,General Mathematics
Reference33 articles.
1. L. Beck and G. Mingione,
Lipschitz bounds and nonuniform ellipticity,
Comm. Pure Appl. Math. 73 (2020), no. 5, 944–1034.
2. P. Bella and M. Schäffner,
On the regularity of minimizers for scalar integral functionals with
(
p
,
q
)
(p,q)
-growth,
Analysis PDE 13 (2020), no. 7, 2241–2257.
3. P. Bella and M. Schäffner,
Lipschitz bounds for integral functionals with
(
p
,
q
)
(p,q)
-growth conditions,
preprint (2022), http://arxiv.org/abs/2202.12999.
4. M. Bildhauer and M. Fuchs,
Interior regularity for free and constrained local minimizers of variational integrals under general growth and ellipticity conditions,
J. Math. Sci 123 (2004), no. 6, 4565–4576.
5. M. S. Birman, S. Hildebrandt, V. A. Solonnikov and N. N. Uraltseva,
Nonlinear Problems in Mathematical Physics and Related Topics. I. In Honor of Professor O. A. Ladyzhenskaya,
Int. Math. Ser. (New York) 1,
Kluwer Academic, New York, 2002.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献