Anharmonic solutions to the Riccati equation and elliptic modular functions

Author:

Sebbar Ahmed,Wone Oumar

Abstract

AbstractWe study the irreducible algebraic equationx^{n}+a_{1}x^{n-1}+\cdots+a_{n}=0,\quad\text{with ${n\geq 4}$,}on the differential field{(\mathbb{F}=\mathbb{C}(t),\delta=\frac{d}{dt})}. We assume that a root of the equation is a solution to the Riccati differential equation{u^{\prime}+B_{0}+B_{1}u+B_{2}u^{2}=0}, where{B_{0}},{B_{1}},{B_{2}}are in{\mathbb{F}}.We show how to construct a large class of polynomials as in the above algebraic equation, i.e., we prove that there exists a polynomial{F_{n}(x,y)\in\mathbb{C}(x)[y]}such that for almost{T\in\mathbb{F}\setminus\mathbb{C}}, the algebraic equation{F_{n}(x,T)=0}is of the same type as the above stated algebraic equation. In other words, all its roots are solutions to the same Riccati equation. On the other hand, we give an example of a degree 3 irreducible polynomial equation satisfied by certain weight 2 modular forms for the subgroup{\Gamma(2)}, whose roots satisfy a common Riccati equation on the differential field{(\mathbb{C}(E_{2},E_{4},E_{6}),\frac{d}{d\tau})}, with{E_{i}(\tau)}being the Eisenstein series of weighti. These solutions are related to a Darboux–Halphen system. Finally, we deal with the following problem: For which “potential”{q\in\mathbb{C}(\wp,\wp^{\prime})}does the Riccati equation{\frac{dY}{dz}+Y^{2}=q}admit algebraic solutions over the differential field{\mathbb{C}(\wp,\wp^{\prime})}, with{\wp}being the classical Weierstrass function? We study this problem via Darboux polynomials and invariant theory and show that the minimal polynomial{\Phi(x)}of an algebraic solutionumust have a vanishing fourth transvectant{\tau_{4}(\Phi)(x)}.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference52 articles.

1. Elementary first integrals of differential equations;Trans. Amer. Math. Soc.,1983

2. On a non-linear partial differential equation satisfied by the logarithm derivative of the Jacobian theta functions, with arithmetical applications. I, II;Indag. Math.,1951

3. Transcendence of Jacobi’s theta series;Proc. Japan Acad. Ser. A Math. Sci.,1996

4. Applications de la théorie des complexes linéaires à l’étude des surfaces et des courbes gauches;Ann. Sci. Éc. Norm. Supér.,1877

5. Sopra una classe di forme binarie;Annali di Mat. (2),1877

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3