Euler’s integral, multiple cosine function and zeta values

Author:

Hu Su1,Kim Min-Soo2ORCID

Affiliation:

1. Department of Mathematics , [ 26467]South China University of Technology, Guangzhou , Guangdong 510640 , P. R. China

2. Department of Mathematics Education , [ 34985]Kyungnam University, Changwon , Gyeongnam 51767 , Republic of Korea

Abstract

Abstract In 1769, Euler proved the following result: 0 π 2 log ( sin θ ) 𝑑 θ = - π 2 log 2 . \int_{0}^{\frac{\pi}{2}}\log(\sin\theta)\,d\theta=-\frac{\pi}{2}\log 2. In this paper, as a generalization, we evaluate the definite integrals 0 x θ r - 2 log ( cos θ 2 ) 𝑑 θ \int_{0}^{x}\theta^{r-2}\log\biggl{(}\cos\frac{\theta}{2}\biggr{)}\,d\theta for r = 2 , 3 , 4 , r=2,3,4,\dots  . We show that it can be expressed by the special values of Kurokawa and Koyama’s multiple cosine functions 𝒞 r ( x ) {\mathcal{C}_{r}(x)} or by the special values of alternating zeta and Dirichlet lambda functions. In particular, we get the following explicit expression of the zeta value: ζ ( 3 ) = 4 π 2 21 log ( e 4 G π 𝒞 3 ( 1 4 ) 16 2 ) , \zeta(3)=\frac{4\pi^{2}}{21}\log\Biggl{(}\frac{e^{\frac{4G}{\pi}}\mathcal{C}_{% 3}\bigl{(}\frac{1}{4}\bigr{)}^{16}}{\sqrt{2}}\Biggr{)}, where G is Catalan’s constant and 𝒞 3 ( 1 4 ) {\mathcal{C}_{3}(\frac{1}{4})} is the special value of Kurokawa and Koyama’s multiple cosine function 𝒞 3 ( x ) {\mathcal{C}_{3}(x)} at 1 4 {\frac{1}{4}} . Furthermore, we prove several series representations for the logarithm of multiple cosine functions log 𝒞 r ( x 2 ) {\log\mathcal{C}_{r}(\frac{x}{2})} by zeta functions, L-functions or polylogarithms. One of them leads to another expression of ζ ( 3 ) {\zeta(3)} : ζ ( 3 ) = 72 π 2 11 log ( 3 1 72 𝒞 3 ( 1 6 ) 𝒞 2 ( 1 6 ) 1 3 ) . \zeta(3)=\frac{72\pi^{2}}{11}\log\Biggl{(}\frac{3^{\frac{1}{72}}\mathcal{C}_{3% }\bigl{(}\frac{1}{6}\bigr{)}}{\mathcal{C}_{2}\bigl{(}\frac{1}{6}\bigr{)}^{% \frac{1}{3}}}\Biggr{)}.

Funder

National Research Foundation of Korea

Publisher

Walter de Gruyter GmbH

Reference37 articles.

1. V. S. Adamchik, On the Barnes function, Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation, ACM, New York (2001), 15–20.

2. V. S. Adamchik, The multiple gamma function and its application to computation of series, Ramanujan J. 9 (2005), no. 3, 271–288.

3. J.-P. Allouche, Hölder and Kurokawa meet Borwein–Dykshoorn and Adamchik, J. Ramanujan Math. Soc. 38 (2023), no. 3, 265–273.

4. R. Apéry, Irrationalité de ζ ⁢ 2 \zeta 2 et ζ ⁢ 3 \zeta 3 , Journées Arithmétiques de Luminy, Astérisque 61, Société Mathématique de France, Paris (1979), 11–13.

5. T. M. Apostol, Introduction to Analytic Number Theory, Undergrad. Texts Math., Springer, New York, 1976.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3