Affiliation:
1. Tianjin Normal University, Tianjin300387, P. R. China
2. University of Pennsylvania, Philadelphia, PA 19104, USA
Abstract
AbstractIn this work, we continue with the classification for positively curve homogeneous Finsler spaces {(G/H,F)}. With the assumption that the homogeneous space {G/H} is odd dimensional and the positively curved metric F is reversible, we only need to consider the most difficult case left, i.e. when the isotropy group H is regular in G. Applying the fixed point set technique and the homogeneous flag curvature formulas, we show that the classification of odd dimensional positively curved reversible homogeneous Finsler spaces coincides with that of L. Bérard Bergery in Riemannian geometry except for five additional possible candidates, i.e. {\mathrm{SU}(4)/\mathrm{SU}(2)_{(1,2)}\mathrm{S}^{1}_{(1,1,1,-3)}},
{\mathrm{Sp}(2)/\mathrm{S}^{1}_{(1,1)}},
{\mathrm{Sp}(2)/\mathrm{S}^{1}_{(1,3)}},
{\mathrm{Sp}(3)/\mathrm{Sp}(1)_{(3)}\mathrm{S}^{1}_{(1,1,0)}},
and {G_{2}/\mathrm{SU}(2)} with {\mathrm{SU}(2)} the normal subgroup of {\mathrm{SO}(4)} corresponding to the long root. Applying this classification to homogeneous positively curved reversible {(\alpha,\beta)} metrics, the number of exceptional candidates can be reduced to only two, i.e. {\mathrm{Sp}(2)/\mathrm{S}^{1}_{(1,1)}} and {\mathrm{Sp}(3)/\mathrm{Sp}(1)_{(3)}\mathrm{S}^{1}_{(1,1,0)}}.
Subject
Applied Mathematics,General Mathematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献