On three-variable expanders over finite valuation rings

Author:

Ham Le Quang1,Van The Nguyen1,Tran Phuc D.2,Vinh Le Anh3

Affiliation:

1. VNU University of Science , Vietnam National University , Hanoi , Vietnam

2. Department of Mathematics & Sciences , American University in Bulgaria , Blagoevgrad , Bulgaria

3. Vietnam National University ; and Vietnam Institute of Educational Sciences , Hanoi , Vietnam

Abstract

Abstract Let {\mathcal{R}} be a finite valuation ring of order q r {q^{r}} . In this paper, we prove that for any quadratic polynomial f ( x , y , z ) [ x , y , z ] {f(x,y,z)\in\mathcal{R}[x,y,z]} that is of the form a x y + R ( x ) + S ( y ) + T ( z ) {axy+R(x)+S(y)+T(z)} for some one-variable polynomials R , S , T {R,S,T} , we have | f ( A , B , C ) | min { q r , | A | | B | | C | q 2 r - 1 } |f(A,B,C)|\gg\min\biggl{\{}q^{r},\frac{|A||B||C|}{q^{2r-1}}\bigg{\}} for any A , B , C {A,B,C\subset\mathcal{R}} . We also study the sum-product type problems over finite valuation ring {\mathcal{R}} . More precisely, we show that for any A {A\subset\mathcal{R}} with | A | q r - 1 3 {|A|\gg q^{r-\frac{1}{3}}} then max { | A A | , | A d + A d | } {\max\{|AA|,|A^{d}+A^{d}|\}} , max { | A + A | , | A 2 + A 2 | } {\max\{|A+A|,|A^{2}+A^{2}|\}} , max { | A - A | , | A A + A A | } | A | 2 3 q r 3 {\max\{|A-A|,|AA+AA|\}\gg|A|^{\frac{2}{3}}q^{\frac{r}{3}}} , and | f ( A ) + A | | A | 2 3 q r 3 {|f(A)+A|\gg|A|^{\frac{2}{3}}q^{\frac{r}{3}}} for any one variable quadratic polynomial f.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference20 articles.

1. E. Aksoy Yazici, Sum-product type estimates for subsets of finite valuation rings, Acta Arith. 185 (2018), no. 1, 9–18.

2. D. N. V. Anh, L. Q. Ham, D. Koh, M. Mirzaei, H. Mojarrad and T. Pham, Moderate expanders over rings, J. Number Theory (2020), 10.1016/j.jnt.2020.07.009.

3. M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra. Vol. 2, Addison-Wesley, Reading, 1969.

4. M. Bennett, D. Hart, A. Iosevich, J. Pakianathan and M. Rudnev, Group actions and geometric combinatorics in 𝔽qd\mathbb{F}_{q}^{d}, Forum Math. 29 (2017), no. 1, 91–110.

5. G. Bini and F. Flamini, Finite Commutative Rings and Their Applications, Kluwer Int. Ser. Eng. Comput. Sci. 680, Kluwer Academic, Boston, 2002.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3