A separation lemma on sub-lattices

Author:

Wang Wei-Min1

Affiliation:

1. CNRS and Département de Mathématique , Cergy Paris Université , 95302 Cergy-Pontoise Cedex , France

Abstract

Abstract We prove that Bourgain’s separation lemma [J. Bourgain, Green’s Function Estimates for Lattice Schrödinger Operators and Applications, Ann. of Math. Stud. 158, Princeton University, Princeton, 2005] holds at fixed frequencies and their neighborhoods, on sub-lattices, sub-modules of the dual lattice associated with a quasi-periodic Fourier series in two dimensions. And, by extension, it holds on the affine spaces. Previously Bourgain’s lemma was not deterministic, and it is valid only for a set of frequencies of positive measure. The new separation lemma generalizes classical lattice partition-type results to the hyperbolic Lorentzian setting, with signature ( 1 , - 1 , - 1 ) {(1,-1,-1)} , and could be of independent interest. Combined with the method in [W.-M. Wang, Quasi-periodic solutions to a nonlinear Klein–Gordon equation with a decaying nonlinear term, preprint 2021, https://arxiv.org/abs/1609.00309], this should lead to the existence of quasi-periodic solutions to the nonlinear Klein–Gordon equation with the usual polynomial nonlinear term u p + 1 {u^{p+1}} .

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3