Affiliation:
1. Graduate School of Mathematics , Nagoya University , Chikusa-ku , Nagoya 464-8602 , Japan
Abstract
Abstract
We consider iterated integrals of
log
ζ
(
s
)
{\log\zeta(s)}
on certain vertical and horizontal lines.
Here, the function
ζ
(
s
)
{\zeta(s)}
is the Riemann zeta-function.
It is a well-known open problem whether or not the values of the Riemann zeta-function on the critical line
are dense in the complex plane.
In this paper,
we give a result for the denseness of the values of the iterated integrals on the horizontal lines.
By using this result,
we obtain the denseness of the values of
∫
0
t
log
ζ
(
1
2
+
i
t
′
)
𝑑
t
′
{\int_{0}^{t}\log\zeta(\frac{1}{2}+it^{\prime})\,dt^{\prime}}
under the Riemann Hypothesis.
Moreover, we show that, for any
m
≥
2
{m\geq 2}
, the denseness of the values of an m-times iterated integral on the critical line is equivalent to the Riemann Hypothesis.
Funder
Japan Society for the Promotion of Science
Subject
Applied Mathematics,General Mathematics
Reference22 articles.
1. H. Bohr,
Zur Theorie der Riemann’schen Zeta-funktion im kritischen Streifen,
Acta Math. 40 (1916), 67–100.
2. H. Bohr and R. Courant,
Neue Anwendungen der Theorie der Diophantischen Approximationen auf die Riemannsche Zetafunktion,
J. Reine Angew. Math. 144 (1914), 249–274.
3. H. Bohr and B. Jessen, Über die Werteverteilung der Riemannschen Zetafunktion, Erste Mitteilung, Acta Math. 54 (1930), 1-35
4. Zweite Mitteilung, ibid. 58 (1932), 1-55.
5. E. Bombieri and D. A. Hejhal,
On the distribution of zeros of linear combinations of Euler products,
Duke Math. J. 80 (1995), no. 3, 821–862.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献