De Branges–Rovnyak spaces and local Dirichlet spaces of higher order
Author:
Łanucha Bartosz1ORCID, Michalska Małgorzata1ORCID, Nowak Maria1ORCID, Sołtysiak Andrzej2ORCID
Affiliation:
1. Institute of Mathematics , Maria Curie-Skłodowska University , pl. M. Curie-Skłodowskiej 1, 20-031 Lublin , Poland 2. Faculty of Mathematics and Computer Science , Adam Mickiewicz University , ul. Uniwersytetu Poznańskiego 4, 61-614 Poznań , Poland
Abstract
Abstract
We discuss de Branges–Rovnyak spaces
ℋ
(
b
)
{\mathcal{H}(b)}
generated by nonextreme and rational functions b and local Dirichlet spaces of order m introduced in [S. Luo, C. Gu and S. Richter,
Higher order local Dirichlet integrals and de Branges–Rovnyak spaces,
Adv. Math. 385 2021, Paper No. 107748]. In that paper, the authors characterized nonextreme b for which the operator
Y
=
S
|
ℋ
(
b
)
{Y=S|_{\mathcal{H}(b)}}
, the restriction of the shift operator S on
H
2
{H^{2}}
to
ℋ
(
b
)
{\mathcal{H}(b)}
, is a strict
2
m
{2m}
-isometry and proved that such spaces
ℋ
(
b
)
{\mathcal{H}(b)}
are equal to local Dirichlet spaces of order m. Here we give a characterization of local Dirichlet spaces of order m in terms of the m-th derivatives that is a generalization of a known result on local Dirichlet spaces.
We also find explicit formulas for b in the case when
ℋ
(
b
)
{\mathcal{H}(b)}
coincides with local Dirichlet space of order m with equality of norms. Finally, we prove a property of wandering vectors of Y analogous to the property of wandering vectors of the restriction of S to harmonically weighted Dirichlet spaces obtained in [D. Sarason,
Harmonically weighted Dirichlet spaces associated with finitely atomic measures,
Integral Equations Operator Theory 31 1998, 2, 186–213].
Publisher
Walter de Gruyter GmbH
Subject
Applied Mathematics,General Mathematics
Reference12 articles.
1. N. Chevrot, D. Guillot and T. Ransford,
De Branges–Rovnyak spaces and Dirichlet spaces,
J. Funct. Anal. 259 (2010), no. 9, 2366–2383. 2. C. Costara and T. Ransford,
Which de Branges–Rovnyak spaces are Dirichlet spaces (and vice versa)?,
J. Funct. Anal. 265 (2013), no. 12, 3204–3218. 3. E. Fricain and J. Mashreghi,
The Theory of
ℋ
(
b
)
\mathcal{H}(b)
spaces. Vol. 2,
New Math. Monogr. 21,
Cambridge University Press, Cambridge, 2016. 4. J. W. Helton and M. Putinar,
Positive polynomials in scalar and matrix variables, the spectral theorem, and optimization,
Operator Theory, Structured Matrices, and Dilations,
Theta Ser. Adv. Math. 7,
Theta, Bucharest (2007), 229–306. 5. B. Łanucha and M. Nowak,
De Branges–Rovnyak spaces and generalized Dirichlet spaces,
Publ. Math. Debrecen 91 (2017), no. 1–2, 171–184.
|
|