De Branges–Rovnyak spaces and local Dirichlet spaces of higher order

Author:

Łanucha Bartosz1ORCID,Michalska Małgorzata1ORCID,Nowak Maria1ORCID,Sołtysiak Andrzej2ORCID

Affiliation:

1. Institute of Mathematics , Maria Curie-Skłodowska University , pl. M. Curie-Skłodowskiej 1, 20-031 Lublin , Poland

2. Faculty of Mathematics and Computer Science , Adam Mickiewicz University , ul. Uniwersytetu Poznańskiego 4, 61-614 Poznań , Poland

Abstract

Abstract We discuss de Branges–Rovnyak spaces ( b ) {\mathcal{H}(b)} generated by nonextreme and rational functions b and local Dirichlet spaces of order m introduced in [S. Luo, C. Gu and S. Richter, Higher order local Dirichlet integrals and de Branges–Rovnyak spaces, Adv. Math. 385 2021, Paper No. 107748]. In that paper, the authors characterized nonextreme b for which the operator Y = S | ( b ) {Y=S|_{\mathcal{H}(b)}} , the restriction of the shift operator S on H 2 {H^{2}} to ( b ) {\mathcal{H}(b)} , is a strict 2 m {2m} -isometry and proved that such spaces ( b ) {\mathcal{H}(b)} are equal to local Dirichlet spaces of order m. Here we give a characterization of local Dirichlet spaces of order m in terms of the m-th derivatives that is a generalization of a known result on local Dirichlet spaces. We also find explicit formulas for b in the case when ( b ) {\mathcal{H}(b)} coincides with local Dirichlet space of order m with equality of norms. Finally, we prove a property of wandering vectors of Y analogous to the property of wandering vectors of the restriction of S to harmonically weighted Dirichlet spaces obtained in [D. Sarason, Harmonically weighted Dirichlet spaces associated with finitely atomic measures, Integral Equations Operator Theory 31 1998, 2, 186–213].

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference12 articles.

1. N. Chevrot, D. Guillot and T. Ransford, De Branges–Rovnyak spaces and Dirichlet spaces, J. Funct. Anal. 259 (2010), no. 9, 2366–2383.

2. C. Costara and T. Ransford, Which de Branges–Rovnyak spaces are Dirichlet spaces (and vice versa)?, J. Funct. Anal. 265 (2013), no. 12, 3204–3218.

3. E. Fricain and J. Mashreghi, The Theory of ℋ ⁢ ( b ) \mathcal{H}(b) spaces. Vol. 2, New Math. Monogr. 21, Cambridge University Press, Cambridge, 2016.

4. J. W. Helton and M. Putinar, Positive polynomials in scalar and matrix variables, the spectral theorem, and optimization, Operator Theory, Structured Matrices, and Dilations, Theta Ser. Adv. Math. 7, Theta, Bucharest (2007), 229–306.

5. B. Łanucha and M. Nowak, De Branges–Rovnyak spaces and generalized Dirichlet spaces, Publ. Math. Debrecen 91 (2017), no. 1–2, 171–184.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3