The Weil bound for generalized Kloosterman sums of half-integral weight

Author:

Andersen Nickolas1,Anderson Gradin1,Woodall Amy2

Affiliation:

1. Mathematics Department , 6756 Brigham Young University , Provo , UT 84602 , USA

2. Mathematics Department , 14589 University of Illinois at Urbana-Champaign , Urbana , IL 61801 , USA

Abstract

Abstract Let L be an even lattice of odd rank with discriminant group L / L {L^{\prime}/L} , and let α , β L / L {\alpha,\beta\in L^{\prime}/L} . We prove the Weil bound for the Kloosterman sums S α , β ( m , n , c ) {S_{\alpha,\beta}(m,n,c)} of half-integral weight for the Weil Representation attached to L. We obtain this bound by proving an identity that relates a divisor sum of Kloosterman sums to a sparse exponential sum. This identity generalizes Kohnen’s identity for plus space Kloosterman sums with the theta multiplier system.

Publisher

Walter de Gruyter GmbH

Reference25 articles.

1. A. Adolphson, On the distribution of angles of Kloosterman sums, J. Reine Angew. Math. 395 (1989), 214–220.

2. S. Ahlgren and N. Andersen, Kloosterman sums and Maass cusp forms of half integral weight for the modular group, Int. Math. Res. Not. IMRN 2018 (2018), no. 2, 492–570.

3. Ş. Alaca and G. Doyle, Explicit evaluation of double Gauss sums, J. Comb. Number Theory 9 (2017), no. 1, 47–61.

4. N. Andersen, Singular invariants and coefficients of harmonic weak Maass forms of weight 5/2, Forum Math. 29 (2017), no. 1, 7–29.

5. E. H. Bareiss, Sylvester’s identity and multistep integer-preserving Gaussian elimination, Math. Comp. 22 (1968), 565–578.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3