Contramodules over pro-perfect topological rings

Author:

Positselski Leonid1ORCID

Affiliation:

1. Department of Algebra, Geometry and Mathematical Physics , Institute of Mathematics of the Czech Academy of Sciences , Žitná 25, 115 67 Praha 1 , Czech Republic ; and Laboratory of Algebra and Number Theory, Institute for Information Transmission Problems, Moscow 127051, Russia

Abstract

Abstract For four wide classes of topological rings R \mathfrak{R} , we show that all flat left R \mathfrak{R} -contramodules have projective covers if and only if all flat left R \mathfrak{R} -contramodules are projective if and only if all left R \mathfrak{R} -contramodules have projective covers if and only if all descending chains of cyclic discrete right R \mathfrak{R} -modules terminate if and only if all the discrete quotient rings of R \mathfrak{R} are left perfect. Three classes of topological rings for which this holds are the complete, separated topological associative rings with a base of neighborhoods of zero formed by open two-sided ideals such that either the ring is commutative, or it has a countable base of neighborhoods of zero, or it has only a finite number of semisimple discrete quotient rings. The fourth class consists of all the topological rings with a base of neighborhoods of zero formed by open right ideals which have a closed two-sided ideal with certain properties such that the quotient ring is a topological product of rings from the previous three classes. The key technique on which the proofs are based is the contramodule Nakayama lemma for topologically T-nilpotent ideals.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Bounded Below, Noncontractible, Acyclic Complex Of Projective Modules;Acta Mathematica Hungarica;2024-03-13

2. Exact Categories of Topological Vector Spaces with Linear Topology;Moscow Mathematical Journal;2024

3. Categories of modules, comodules and contramodules over representations;Forum Mathematicum;2023-08-25

4. Topologically Semiperfect Topological Rings;Algebras and Representation Theory;2023-07-10

5. The Semitensor Product;Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3