Extrapolation to product Herz spaces and some applications

Author:

Wei Mingquan1ORCID

Affiliation:

1. School of Mathematics and Statistics , Xinyang Normal University , Xinyang 464000 , P. R. China

Abstract

Abstract This paper extends the extrapolation theory to product Herz spaces. To prove the main result, we first investigate the dual space of the product Herz space, and then show the boundedness of the strong maximal operator on product Herz spaces. By using this extrapolation theory, we establish the John–Nirenberg inequality, the characterization of little bmo, the Fefferman–Stein vector-valued inequality, the boundedness of the bi-parameter singular integral operator, the strong fractional maximal operator, and the bi-parameter fractional integral operator on product Herz spaces. We also give a new characterization of little bmo via the boundedness of the commutators of some bi-parameter operators on product Herz spaces. Even in the one-parameter setting, some of our results are new.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Product Hardy Spaces Meet Ball Quasi-Banach Function Spaces;The Journal of Geometric Analysis;2024-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3