Affiliation:
1. College of Mathematics and Information Science, Hebei University, Baoding071002, P. R. China
Abstract
AbstractThis paper deals with the problem\displaystyle u\in{\cal K}_{u_{*},\psi}(\Omega),\displaystyle\forall v\in{\cal K}_{u_{*},\psi}(\Omega):\int_{\Omega}\sum_{i=1}%
^{n}[a_{i}(x,Du)-f^{i}]D_{i}(u-v)\,dx\leqslant\int_{\Omega}f(u-v)\,dx,where\left\{\begin{aligned} &\displaystyle{\cal K}_{u_{*},\psi}(\Omega)=\biggl{\{}v%
\in u_{*}+W_{0}^{1,(p_{i})}(\Omega):\sum_{i=1}^{n}a_{i}(x,Du)D_{i}v\in L^{1}(%
\Omega)\text{ and }v\geqslant\psi,\text{ a.e. }\Omega\biggr{\}},\\
&\displaystyle u_{*}\in W^{1,(p_{i})}(\Omega),\quad\theta=\max\{u_{*},\psi\}%
\in u_{*}+W_{0}^{1,(p_{i})}(\Omega),\\
&\displaystyle f\in L^{(\bar{p}^{*})^{\prime}}(\Omega),\quad f^{i}\in L^{p_{i}%
^{\prime}}(\Omega),\,i=1,\dots,n,\end{aligned}\right.and the Carathéodory functions {a_{i}:\Omega\times{\mathbb{R}}^{n}\to{\mathbb{R}}}, {i=1,\dots,n}, satisfy some coercivity condition.
We assume that the function {\theta=\max\{u_{*},\psi\}} makes {a_{i}(x,D\theta)} to be more integrable than {L^{p_{i}^{\prime}}(\Omega)}, {i=1,\dots,n}, and then we prove that the solution u enjoys higher integrability.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hebei Province
Subject
Applied Mathematics,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献